
CS 61A Scheme
Fall 2019 Guerrilla Section : November 1, 2019

1 Scheme
1.1 What would Scheme do?

scm> (and 0 2 200)

scm> (or True (/ 1 0))

scm> (and False (/ 1 0))

scm> (not 3)

1.2 What would Scheme display?

scm> (define a (+ 1 2))

scm> a

scm> (define b (+ (* 3 3) (* 4 4)))

scm> (+ a b)

scm> (= (modulo 10 3) (quotient 5 3))

scm> (even? (+ (- (* 5 4) 3) 2))

scm> (if (and #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> (+ 2 3) 5) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

scm> ((if (< 9 3) + -) 4 100)

scm> (if 0 #t #f)



2 Scheme

1.3 Write two Scheme expressions that are equivalent to the following Python statement

- one defining a function directly, and the other creating an anonymous lambda that

is then bound to the name cat:

cat = lambda meow, purr: meow + purr

1.4 Spot the bug(s). Test out the code and your fixes in the scheme interpreter!

(https://scheme.cs61a.org/)

(define (sum-every-other lst)

(cond ((null? lst) lst)

(else (+ (cdr lst)

(sum-every-other (caar lst)) )))

1.5 Define sixty-ones, a funcion that takes in a list and returns the number of times

that 1 follows 6 in the list.

> (sixty-ones '(4 6 1 6 0 1))

1

> (sixty-ones '(1 6 1 4 6 1 6 0 1))

2

> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))

3

1.6 Define no-elevens, a function that takes in a number n, and returns a list of all

distinct length-n lists of 1s and 6s that do not contain two consecutive 1s.

> (no-elevens 2)

((6 6) (6 1) (1 6))

> (no-elevens 3)

((6 6 6) (6 6 1) (6 1 6) (1 6 6) (1 6 1))

> (no-elevens 4)

((6 6 6 6) (6 6 6 1) (6 6 1 6) (6 1 6 6) (6 1 6 1) (1 6 6 6) (1 6 6 1) (1 6 1 6))



Scheme 3

1.7 Define remember, a function that takes in another zero-argument function f, and

returns another function g. When called for the first time, g will call f and pass

on its return value. When called subsequent times, g will remember its previous

return value and return it directly, without calling f again.

(Hint: look up set! in the Scheme spec!)

(define (remember f)

)

scm> (define (f) (print "hello!") 5)

scm> (define g (remember f))

scm> (f)

hello!

5

scm> (g)

hello!

5

scm> (g)

5

Check your understanding

• How are call expressions (like (+ 1 2 3)) evaluated? What about special

forms, like (or #f #t (/ 1 0))

• What is the purpose of the quote special form?



4 Scheme

2 Scheme Lists
2.1 Draw out a box-and-pointer diagram for the following list:

scm> (define nested-lst (list 1 (cons 2 (cons 3 'nil)) '(4 5 6) 7))

nested-lst

Then, write out what Scheme would display for the following expressions:

scm> (cdr nested-lst)

scm> (cdr (car (cdr nested-lst)))

scm> (cons (car nested-list) (car (cdr (cdr nested-list))))



Scheme 5

Extra

2.2 Notice that the builtin append takes in, not a list of lists, but an arbitrary number of

lists as arguments, which it then concatenates together. Implement better-append,

which behaves in such a manner, allowing the caller to pass in an arbitrary number

of arguments. You may use concat from the previous question.

(Hint: look up “variadic functions” in the Scheme spec!)

scm> (better-append '(1 2 3))

(1 2 3)

scm> (better-append '(1 2 3) '(2 3 4))

(1 2 3 2 3 4)

scm> (better-append '(1 2 3) '(2 3 4) '(3 4 5))

(1 2 3 2 3 4 3 4 5)

Check your understanding

• How can you get the third element of a Scheme list? Draw out a box-and-

pointer diagram if you aren’t sure.

• What is the difference between eq? and equal? in the context of Scheme

lists? Construct two lists lst1 and lst2 such that (equal? lst1 lst2) is #t

but (eq? lst1 lst2) is #f.


	Scheme
	Scheme Lists

