1.1

1.2

1.3

CS 61A Recursion and Tree Recursion
FaH 2019 Guerrilla Section 1: September 27, 2019

1 Recursion ancl Tree Recursion

Questions

What are three things you find in every recursive function?

When you write a Recursive function, you seem to call it before it has been fully
defined. Why doesn’t this break the Python interpreter?

Below is a Python function that computes the nth Fibonacci number. Identify the

three things it contains as a recursive function (from 1.1).

def fib(n):
if n ==
return 0
elif n == 1:
return 1
else:
return fib(n-1) + fib(n-2)

1.4 With the definition of the Fibonacci function above, draw out a diagram of the

recursive calls made when fib(4) is called.



1.5

1.6

2 Recursion and Tree Recursion

What does the following function cascade2 do? What is its domain and range?

def cascade2(n):
print(n)
if n >= 10:
cascade2(n//10)
print(n)

Consider an insect in an M by N grid. The insect starts at the bottom left corner,
(0, 0), and wants to end up at the top right corner (M-1, N-1). The insect is only
capable of moving right or up. Write a function paths that takes a grid length and
width and returns the number of different paths the insect can take from the start
to the goal. (There is a closed-form solution to this problem, but try to answer it

procedurally using recursion.)

def paths(m, n):
>>> paths(2, 2)
2
>>> paths(117, 1)
1



Recursion and Tree Recursion 3

1.7 Write a procedure merge(s1, s2) which takes two sorted (smallest value first) lists
and returns a single list with all of the elements of the two lists, in ascending order.

Use recursion.

Hint: If you can figure out which list has the smallest element out of both, then we
know that the resulting merged list will have that smallest element, followed by the
merge of the two lists with the smallest item removed. Don’t forget to handle the

case where one list is empty!

def merge(sl1, s2):
""" Merges two sorted lists
>>> merge([1, 3], [2, 4])
[1, 2, 3, 4]
>>> merge([1, 21, [1)
[1, 2]

nun



4 Recursion and Tree Recursion

1.8 Mario needs to jump over a sequence of Piranha plants, represented as a string of
dashes (no plant) and P’s (plant!). He only moves forward, and he can either step
(move forward one place) or jump (move forward two places) from each position.
How many different ways can Mario traverse a level without stepping or jumping
into a Piranha plant? Assume that every level begins with a dash (where Mario
starts) and ends with a dash (where Mario must end up):

Hint: You can get the ith character in a string s by using s[i]. For example,

>>> s = 'abcdefg'
>>> s[0]

>>> s[2]

You can find the total number of characters in a string with the built-in len function:

>>> s = 'abcdefg'
>>> len(s)

7

>>> len('")

%

def mario_number(level):
"""Return the number of ways that Mario can perform a sequence of steps
or jumps to reach the end of the level without ever landing in a Piranha
plant. Assume that every level begins and ends with a dash.
>>> mario_number('-P-P-') # jump, jump

>>> mario_number('-P-P--") # jump, jump, step

>>> mario_number('--P-P-') # step, jump, jump

>>> mario_number('---P-P-') # step, step, jump, jump or jump, jump, jump
2

>>> mario_number('-P-PP-') # Mario cannot jump two plants

Q

>>> mario_number('----") # step, jump ; jump, step ; step, step, step
3

>>> mario_number('----P----")

9

>>> mario_number (' ---P----P-P---P--P-P----P-----P-')

180



	Recursion and Tree Recursion

