
CS 61A Final Review
Fall 2019 Discussion 14: December 4, 2019

1 Recursion
1.1 (Adapted from Fall 2013) Fill in the blanks in the implementation of paths, which

takes as input two positive integers x and y. It returns a list of paths, where

each path is a list containing steps to reach y from x by repeated incrementing or

doubling For instance, we can reach 9 from 3 by incrementing to 4, doubling to 8,

then incrementing again to 9, so one path is [3, 4, 8, 9]

def paths(x, y):

"""Return a list of ways to reach y from x by repeated

incrementing or doubling.

>>> paths(3, 5)

[[3, 4, 5]]

>>> sorted(paths(3, 6))

[[3, 4, 5, 6], [3, 6]]

>>> sorted(paths(3, 9))

[[3, 4, 5, 6, 7, 8, 9], [3, 4, 8, 9], [3, 6, 7, 8, 9]]

>>> paths(3, 3) # No calls is a valid path

[[3]]

"""

if _________________________:

return __

elif _______________________:

return __

else:

a = ___

b = ___

return __

2 Final Review

1.2 We will now write one of the faster sorting algorithms commonly used, known as

merge sort. Merge sort works like this:

1. If there is only one (or zero) item(s) in the sequence, it is already sorted!

2. If there are more than one item, then we can split the sequence in half, sort

each half recursively, then merge the results, using the merge procedure from

earlier in the notes. The result will be a sorted sequence.

Using the algorithm described, write a function mergesort(seq) that takes an un-

sorted sequence and sorts it.

def mergesort(seq):

Final Review 3

2 Trees
2.1 Implement long paths, which returns a list of all paths in a tree with length at least

n. A path in a tree is a linked list of node values that starts with the root and ends

at a leaf. Each subsequent element must be from a child of the previous value’s

node. The length of a path is the number of edges in the path (i.e. one less than

the number of nodes in the path). Paths are listed in order from left to right. See

the doctests for some examples.

def long_paths(tree, n):

"""Return a list of all paths in tree with length at least n.

>>> t = Tree(3, [Tree(4), Tree(4), Tree(5)])

>>> left = Tree(1, [Tree(2), t])

>>> mid = Tree(6, [Tree(7, [Tree(8)]), Tree(9)])

>>> right = Tree(11, [Tree(12, [Tree(13, [Tree(14)])])])

>>> whole = Tree(0, [left, Tree(13), mid, right])

>>> for path in long_paths(whole, 2):

... print(path)

...

<0 1 2>

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 6 9>

<0 11 12 13 14>

>>> for path in long_paths(whole, 3):

... print(path)

...

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 11 12 13 14>

>>> long_paths(whole, 4)

[Link(0, Link(11, Link(12, Link(13, Link(14)))))]

"""

4 Final Review

3 Mutation
3.1 For each row below, fill in the blanks in the output displayed by the interactive

Python interpreter when the expression is evaluated. Expressions are evaluated in

order, and expressions may affect later expressions.

>>> cats = [1, 2]

>>> dogs = [cats, cats.append(23), list(cats)]

>>> cats

>>> dogs[1] = list(dogs)

>>> dogs[1]

>>> dogs[0].append(2)

>>> cats

>>> cats[1::2]

>>> cats[:3]

>>> dogs[2].extend([list(cats).pop(0), 3])

>>> dogs[3]

>>> dogs

Final Review 5

4 Mutable Linked Lists and Trees
4.1 Write a recursive function flip two that takes as input a linked list lnk and mutates

lnk so that every pair is flipped.

def flip_two(lnk):

"""

>>> one_lnk = Link(1)

>>> flip_two(one_lnk)

>>> one_lnk

Link(1)

>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))

>>> flip_two(lnk)

>>> lnk

Link(2, Link(1, Link(4, Link(3, Link(5)))))

"""

6 Final Review

5 Generators
5.1 Write a generator function that yields functions that are repeated applications of

a one-argument function f. The first function yielded should apply f 0 times (the

identity function), the second function yielded should apply f once, etc.

def repeated(f):

"""

>>> double = lambda x: 2 * x

>>> funcs = repeated(double)

>>> identity = next(funcs)

>>> double = next(funcs)

>>> quad = next(funcs)

>>> oct = next(funcs)

>>> quad(1)

4

>>> oct(1)

8

>>> [g(1) for _, g in

... zip(range(5), repeated(lambda x: 2 * x))]

[1, 2, 4, 8, 16]

"""

g = __

while True:

__

__

5.2 Ben Bitdiddle proposes the following alternate solution. Does it work?

def ben_repeated(f):

g = lambda x: x

while True:

yield g

g = lambda x: f(g(x))

Final Review 7

5.3 Implement accumulate, which takes in an iterable and a function f and yields

each accumulated value from applying f to the running total and the next element.

from operator import add, mul

def accumulate(iterable, f):

"""

>>> list(accumulate([1, 2, 3, 4, 5], add))

[1, 3, 6, 10, 15]

>>> list(accumulate([1, 2, 3, 4, 5], mul))

[1, 2, 6, 24, 120]

"""

it = iter(iterable)

__

__

for __:

__

__

8 Final Review

6 Streams
6.1 Write a function merge that takes 2 sorted streams s1 and s2, and returns a new

sorted stream which contains all the elements from s1 and s2.

Assume that both s1 and s2 have infinite length.

(define (merge s1 s2)

(if ___

___))

6.2 (Adapted from Fall 2014) Implement cycle which returns a stream repeating the

digits 1, 3, 0, 2, and 4, forever. Write cons-stream only once in your solution!

Hint: (3+2) % 5 == 0.

(define (cycle start)

__)

Final Review 9

7 Macros
7.1 Using macros, let’s make a new special form, when, that has the following structure:

(when <condition>

(<expr1> <expr2> <expr3> ...))

If the condition is not false (a truthy expression), all the subsequent operands are

evaluated in order and the value of the last expression is returned. Otherwise, the

entire when expression evaluates to okay.

scm> (when (= 1 0) ((/ 1 0) 'error))

okay

scm> (when (= 1 1) ((print 6) (print 1) 'a))

6

1

a

(a) Fill in the skeleton below to implement this without using quasiquotes.

(define-macro (when condition exprs)

(list 'if___))

(b) Now, implement the macro using quasiquotes.

(define-macro (when condition exprs)

`(if ___))

7.2 Write a macro called zero-cond that takes in a list of clauses, where each clause

is a two-element list containing two expressions, a predicate and a corresponding

result expression. All predicates evaluate to a number. The macro should return

the value of the expression corresponding to the first true predicate, treating 0 as a

false value.

scm> (zero-cond

((0 'result1)

((- 1 1) 'result2)

((* 1 1) 'result3)

(2 'result4)))

result3

(define-macro (zero-cond clauses)

(cons 'cond

(map __

__

__)))

10 Final Review

8 SQL
Questions
Our tables:

dogs: Name Age Phrase, DEFAULT=“woof”

8.1 What would SQL display? Keep track of the contents of the table after

every statement below. Write Error if you think a statement would cause an

error.

sqlite> SELECT * FROM dogs;

Fido|1|woof

Sparky|2|woof

Lassie|2|I'll save you!

Floofy|3|Much doge

sqlite> INSERT INTO dogs(age, name) VALUES ("Rover", 3);

sqlite> SELECT * FROM dogs;

sqlite> UPDATE dogs SET name=age, age=name WHERE name=3;

sqlite> SELECT * FROM dogs;

sqlite> UPDATE dogs SET phrase="Hi there!" WHERE name LIKE "F%";

sqlite> SELECT * FROM dogs;

sqlite> DELETE FROM dogs WHERE age < 3;

sqlite> SELECT * FROM dogs;

sqlite> INSERT INTO dogs VALUES ("Spot", 2), ("Buster", 4);

sqlite> INSERT INTO dogs(name, phrase) VALUES ("Spot", "bark"), ("Buster", "barkbark");

sqlite> SELECT * FROM dogs;

Final Review 11

sqlite> INSERT INTO dogs(name, age) SELECT name, phrase from dogs where age = 3;

sqlite> DELETE FROM dogs WHERE phrase != "woof";

sqlite> SELECT * FROM dogs;

	Recursion
	Trees
	Mutation
	Mutable Linked Lists and Trees
	Generators
	Streams
	Macros
	SQL

