
CS 61A Interpreters and Tail Calls
Fall 2019 Discussion 10: November 6, 2019

1 Calculator
calc> (+ 2 2)

4

calc> (- 5)

-5

calc> (* (+ 1 2) (+ 2 3))

15

An interpreter is a program that understands other programs. Today, we will ex-

plore how to interpret a simple language that uses Scheme syntax called Calculator.

The Calculator language includes only the four basic arithmetic operations: +, −,

∗, and /. These operations can be nested and can take any numbers of arguments.

A few examples of calculator expressions and their corresponding values are given

on the right. Recall that the reader component of an interpreter parses input

strings and represents them as data structures in the implementing language. In this

case, we need to represent Calculator expressions as Python objects. To represent

numbers, we can just use Python numbers. To represent the names of the arithmetic

procedures, we can use Python strings (e.g. ’+’).

Call expressions are a bit more complicated. First, note that like Scheme call

expressions, call expressions in Calculator look just like Scheme lists. For example,

to construct the expression (+ 2 3) in Scheme, we would do the following:

scm> (cons '+ (cons 2 (cons 3 nil)))

(+ 2 3)

To represent Scheme lists in Python, we will use the Pair class. A Pair instance

holds exactly two elements. Accordingly, the Pair constructor takes in two argu-

ments, and to make a list we must nest calls to the constructor and pass in nil

as the second element of the last pair. Note that in our implementation, nil is

bound to a special user-defined object that represents an empty list, whereas nil

in Scheme is actually an empty list.

>>> Pair('+', Pair(2, Pair(3, nil)))

Pair('+', Pair(2, Pair(3, nil)))

Each Pair instance has two instance attributes: first and rest, which are bound

to the first and second elements of the pair respectively.

>>> p = Pair('+', Pair(2, Pair(3, nil)))

>>> p.first

'+'

>>> p.rest

Pair(2, Pair(3, nil))

>>> p.rest.first

2

Here’s an implementation of what we described:



2 Interpreters and Tail Calls

class Pair:

"""Represents the built-in pair data structure in Scheme."""

def __init__(self, first, rest):

self.first = first

if not scheme_valid_cdrp(rest):

raise SchemeError("cdr can only be a pair, nil, or a promise but was {}".format(rest))

self.rest = rest

def map(self, fn):

"""Maps fn to every element in a list, returning a new

Pair.

>>> Pair(1, Pair(2, Pair(3, nil))).map(lambda x: x * x)

Pair(1, Pair(4, Pair(9, nil)))

"""

assert isinstance(self.rest, Pair) or self.rest is nil, \

"rest element in pair must be another pair or nil"

return Pair(fn(self.first), self.rest.map(fn))

def __repr__(self):

return 'Pair({}, {})'.format(self.first, self.rest)

class nil:

"""Represents the special empty pair nil in Scheme."""

def map(self, fn):

return nil

def __getitem__(self, i):

raise IndexError('Index out of range')

def __repr__(self):

return 'nil'

nil = nil() # this hides the nil class *forever*



Interpreters and Tail Calls 3

Questions
1.1 Write out the Calculator expression with proper syntax that corresponds to the

following Pair constructor calls. Also, draw out a box and pointer diagram corre-

sponding to each input.

>>> Pair('+', Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))

1.2 Answer the following questions about a Pair instance representing the Calculator

expression (+ (- 2 4) 6 8).

i. Write out the Python expression that returns a Pair representing the given

expression, and draw a box and pointer diagram corresponding to it.

ii. What is the operator of the call expression? If the Pair you constructed in the

previous part was bound to the name p, how would you retrieve the operator?

iii. What are the operands of the call expression? If the Pair you constructed in

Part (i) was bound to the name p, how would you retrieve a list containing all

of the operands? How would you retrieve only the first operand?



4 Interpreters and Tail Calls

2 Evaluation
The evaluation component of an interpreter determines the type of an expression

and executes corresponding evaluation rules.

Here are the evaluation rules for the three types of Calculator expressions:

1. Numbers are self-evaluating. For example, the numbers 3.14 and 165 just

evaluate to themselves.

2. Names are looked up in the OPERATORS dictionary. Each name (e.g. ’+’) is

bound to a corresponding function in Python that does the appropriate operation

on a list of numbers (e.g. sum).

3. Call expressions are evaluated the same way you’ve been doing them all

semester:

(1) Evaluate the operator, which evaluates to a function.

(2) Evaluate the operands from left to right.

(3) Apply the function to the value of the operands.

The function calc_eval takes in a Calculator expression represented in Python and

implements each of these rules:

def calc_eval(exp):

"""Evaluates a Calculator expression represented as a Pair."""

if isinstance(exp, Pair): # Call expressions

fn = calc_eval(exp.first)

args = list(exp.rest.map(calc_eval))

return calc_apply(fn, args)

elif exp in OPERATORS: # Names

return OPERATORS[exp]

else: # Numbers

return exp

Note that calc eval is recursive! In order to evaluate call expressions, we must call

calc eval on the operator and each of the operands.

The apply step in the Calculator language is straight-forward, since we only have

primitive procedures. This step is more complex when it comes to applying Scheme

procedures, which may include user-defined procedures.

Given the Python function that implements the appropriate Calculator operation

and a Python list of numbers, the calc_apply function simply calls the function on

the arguments, and regular Python evalutation rules take place.

def calc_apply(fn, args):

"""Applies a Calculator operation to a list of numbers."""

return fn(args)



Interpreters and Tail Calls 5

Questions
2.1 How many calls to calc eval and calc apply would it take to evaluate each of the

following Calculator expressions?

> (+ 2 4 6 8)

> (+ 2 (* 4 (- 6 8)))

2.2 Suppose we want to add handling for comparison operators >, <, and = as well as

and expressions to our Calculator interpreter. These should work the same way

they do in Scheme.

calc> (and (= 1 1) 3)

3

calc> (and (+ 1 0) (< 1 0) (/ 1 0))

#f

i. Are we able to handle expressions containing the comparison operators (such

as <, >, or =) with the existing implementation of calc eval? Why or why not?

ii. Are we able to handle and expressions with the existing implementation of

calc eval? Why or why not?

iii. Now, complete the implementation below to handle and expressions. You may

assume the conditional operators (e.g. <, >, =, etc) have already been imple-

mented for you.

def calc_eval(exp):

if isinstance(exp, Pair):

if _______________________: # and expressions

return eval_and(exp.rest)

else: # Call expressions

return calc_apply(calc_eval(exp.first), list(exp.rest.map(calc_eval)))

elif exp in OPERATORS: # Names

return OPERATORS[exp]

else: # Numbers

return exp

def eval_and(operands):



6 Interpreters and Tail Calls

3 Tail-Call Optimization
Scheme implements tail-call optimization, which allows programmers to write re-

cursive functions that use a constant amount of space. A tail call occurs when a

function calls another function as its last action of the current frame. In this

case, the frame is no longer needed, and we can remove it from memory. In other

words, if this is the last thing you are going to do in a function call, we can reuse

the current frame instead of making a new frame.

Consider this implementation of factorial.

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated.

After calling (fact (- n 1)), the function still needs to multiply that result with

n. The final expression that is evaluated is a call to the multiplication function, not

fact itself. Therefore, the recursive call is not a tail call.

We can rewrite this function using a helper function that remembers the temporary

product that we have calculated so far in each recursive step.

(define (fact n)

(define (fact-tail n result)

(if (= n 0)

result

(fact-tail (- n 1) (* n result))))

(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail, and that recursive call is the

last expression to be evaluated, so it is a tail call. Therefore, fact-tail is a tail

recursive process. We say that a recursive function is tail recursive if all of its

recursive calls are tail calls.

Using a constant number of frames
Tail recursive processes can use a constant amount of memory because each recursive

call frame does not need to be saved.

Our original implementation of fact required the program to keep each frame open

because the last expression multiplies the recursive result with n. Therefore, at each

frame, we need to remember the current value of n.

In contrast, the tail recursive fact-tail does not require the interpreter to remem-

ber the values for n or result in each frame. Instead, we can just update the value

of n and result of the current frame! Therefore, we can keep reusing a single frame

to complete this calculation.



Interpreters and Tail Calls 7

Tail context
When trying to identify whether a given function call within the body of a function

is a tail call, we look for whether the call expression is in tail context.

Given that each of the following expressions is the last expression in the body of

the function, the following expressions are tail contexts:

• the second or third operand in an if expression

• any of the non-predicate sub-expressions in a cond expression (i.e. the second

expression of each clause)

• the last operand in an and or an or expression

• the last operand in a begin expression’s body

• the last operand in a let expression’s body

For example, in the expression (begin (+ 2 3) (- 2 3) (* 2 3)), (* 2 3) is a

tail call because it is the last operand expression to be evaluated.

Questions
3.1 For each of the following functions, identify whether it contains a recursive call in

a tail context. Also indicate if it uses a constant number of frames.

(define (question-b x y)

(if (= x 0) y

(question-b (- x 1) (+ y x))))

(define (question-c x y)

(if (> x y)

(question-c (- y 1) x)

(question-c (+ x 10) y)))

(define (question-d n)

(if (question-d n)

(question-d (- n 1))

(question-d (+ n 10))))

(define (question-e n)

(cond ((= n 0) 1)

((question-e (- n 1)) (question-e (- n 2)))

(else (begin (print 2) (question-e (- n 3))))))



8 Interpreters and Tail Calls

3.2 Write a tail recursive function that takes in a Scheme list and returns the numerical

sum of all values in the list. You can assume that the list contains only numbers

(no nested lists).

(define (sum lst)

3.3 Write a tail recursive function that returns the nth fibonacci number. We define

fib(0) = 0 and fib(1) = 1.

(define (fib n)

(define (fib-sofar ____________________________________________)

(if _________________________________________________________

_________________________________________________________

(fib-sofar ______________________________________________)

(fib-sofar ____________________________________________________))



Interpreters and Tail Calls 9

4 Extra Questions
4.1 Write a tail recursive function that takes in a number and a sorted list. The function

returns a sorted copy with the number inserted in the correct position.

(a) Begin by writing a tail recursive function that reverses a list.

(define (reverse lst)

(define (reverse-sofar lst lst-sofar)

(if (null? lst) ______________________________________________________________________

____________________________________________________________________________________))

________________________________________________________________________________________)

(b) Next, write a tail recursive function that concatenates two lists together. You

may use reverse.

(define (append a b)

(define (rev-append-tail a b)

(if (null? a) ________________________________________________________________________

____________________________________________________________________________________))

________________________________________________________________________________________)

(c) Finally, implement insert. You may use reverse and append.

(define (insert n lst)

(define (rev-insert lst rev-lst)

(cond ((null? lst) ___________________________________________________________________)

((> (car lst) n) _______________________________________________________________)

(else __________________________________________________________________________)))

________________________________________________________________________________________)


	Calculator
	Evaluation
	Tail-Call Optimization
	Extra Questions

