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| Caleulator

An interpreter is a program that understands other programs. Today, we will ex-

plore how to interpret a simple language that uses Scheme syntax called Calculator.

The Calculator language includes only the four basic arithmetic operations: +, —,
*, and /. These operations can be nested and can take any numbers of arguments.
A few examples of calculator expressions and their corresponding values are given
on the right. Recall that the reader component of an interpreter parses input
strings and represents them as data structures in the implementing language. In this
case, we need to represent Calculator expressions as Python objects. To represent
numbers, we can just use Python numbers. To represent the names of the arithmetic

procedures, we can use Python strings (e.g. ’+’).

Call expressions are a bit more complicated. First, note that like Scheme call
expressions, call expressions in Calculator look just like Scheme lists. For example,

to construct the expression (+ 2 3) in Scheme, we would do the following:

scm> (cons '+ (cons 2 (cons 3 nil)))
(+23)

To represent Scheme lists in Python, we will use the Pair class. A Pair instance
holds exactly two elements. Accordingly, the Pair constructor takes in two argu-
ments, and to make a list we must nest calls to the constructor and pass in nil
as the second element of the last pair. Note that in our implementation, nil is
bound to a special user-defined object that represents an empty list, whereas nil

in Scheme is actually an empty list.

>>> Pair('+', Pair(2, Pair(3, nil)))
Pair('+', Pair(2, Pair(3, nil)))

Each Pair instance has two instance attributes: first and rest, which are bound

to the first and second elements of the pair respectively.

>>> p = Pair('+', Pair(2, Pair(3, nil)))
>>> p.first

Lt

>>> p.rest

Pair(2, Pair(3, nil))

>>> p.rest.first

2

Here’s an implementation of what we described:

cale> (+ 2 2)
4

calc> (- 5)
-5

cale> (x (+12) (+ 2 3))
15
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class Pair:
"""Represents the built-in pair data structure in Scheme."""
def __init__(self, first, rest):
self.first = first
if not scheme_valid_cdrp(rest):
raise SchemeError("cdr can only be a pair, nil, or a promise but was {}".format(rest))
self.rest = rest

def map(self, fn):
"""Maps fn to every element in a list, returning a new
Pair.

>>> Pair(1, Pair(2, Pair(3, nil))).map(lambda x: x * x)

Pair(1, Pair(4, Pair(9, nil)))

assert isinstance(self.rest, Pair) or self.rest is nil, \
"rest element in pair must be another pair or nil"

return Pair(fn(self.first), self.rest.map(fn))

def __repr__(self):
return 'Pair({}, {3})'.format(self.first, self.rest)

class nil:
"""Represents the special empty pair nil in Scheme."""
def map(self, fn):
return nil
def __getitem__(self, i):
raise IndexError('Index out of range')
def __repr__(self):
return 'nil’

nil = nil() # this hides the nil class *foreverx
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Questions

Write out the Calculator expression with proper syntax that corresponds to the
following Pair constructor calls. Also, draw out a box and pointer diagram corre-

sponding to each input.

>>> Pair('+', Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))

Answer the following questions about a Pair instance representing the Calculator
expression (+ (- 2 4) 6 8).

i. Write out the Python expression that returns a Pair representing the given

expression, and draw a box and pointer diagram corresponding to it.

ii. What is the operator of the call expression? If the Pair you constructed in the

previous part was bound to the name p, how would you retrieve the operator?

ili. What are the operands of the call expression? If the Pair you constructed in
Part (i) was bound to the name p, how would you retrieve a list containing all

of the operands? How would you retrieve only the first operand?
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2 Evaluation

The evaluation component of an interpreter determines the type of an expression

and executes corresponding evaluation rules.
Here are the evaluation rules for the three types of Calculator expressions:

1. Numbers are self-evaluating. For example, the numbers 3.14 and 165 just
evaluate to themselves.

2. Names are looked up in the OPERATORS dictionary. Each name (e.g. ’+’) is
bound to a corresponding function in Python that does the appropriate operation
on a list of numbers (e.g. sum).

3. Call expressions are evaluated the same way you've been doing them all
semester:

(1) Evaluate the operator, which evaluates to a function.
(2) Evaluate the operands from left to right.

(3) Apply the function to the value of the operands.

The function calc_eval takes in a Calculator expression represented in Python and
implements each of these rules:

def calc_eval(exp):

"""Evaluates a Calculator expression represented as a Pair."""
if isinstance(exp, Pair): # Call expressions

fn = calc_eval(exp.first)

args = list(exp.rest.map(calc_eval))

return calc_apply(fn, args)

elif exp in OPERATORS: # Names
return OPERATORS[exp]

else: # Numbers
return exp

Note that calc_eval is recursive! In order to evaluate call expressions, we must call
calc_eval on the operator and each of the operands.

The apply step in the Calculator language is straight-forward, since we only have
primitive procedures. This step is more complex when it comes to applying Scheme
procedures, which may include user-defined procedures.

Given the Python function that implements the appropriate Calculator operation
and a Python list of numbers, the calc_apply function simply calls the function on

the arguments, and regular Python evalutation rules take place.

def calc_apply(fn, args):
"""Applies a Calculator operation to a list of numbers."""
return fn(args)
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Questions

2.1 How many calls to calc_eval and calc_apply would it take to evaluate each of the

following Calculator expressions?

> (+2468)
> (+2 (x4 (-68))

2.2 Suppose we want to add handling for comparison operators >, <, and = as well as
and expressions to our Calculator interpreter. These should work the same way
they do in Scheme.

calc> (and (=1 1) 3)

3

cale> (and (+ 1 0) (<1 0) (/1 0))
#f

i. Are we able to handle expressions containing the comparison operators (such

as <, >, or =) with the existing implementation of calc_eval? Why or why not?

ii. Are we able to handle and expressions with the existing implementation of
calc_eval? Why or why not?

iii. Now, complete the implementation below to handle and expressions. You may
assume the conditional operators (e.g. <, >, =, etc) have already been imple-

mented for you.

def calc_eval(exp):
if isinstance(exp, Pair):
if . # and expressions

return eval_and(exp.rest)

else: # Call expressions
return calc_apply(calc_eval(exp.first), list(exp.rest.map(calc_eval)))
elif exp in OPERATORS: # Names
return OPERATORS[exp]
else: # Numbers
return exp

def eval_and(operands):
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3 Tail-Call Optimization

Scheme implements tail-call optimization, which allows programmers to write re-
cursive functions that use a constant amount of space. A tail call occurs when a
function calls another function as its last action of the current frame. In this
case, the frame is no longer needed, and we can remove it from memory. In other
words, if this is the last thing you are going to do in a function call, we can reuse

the current frame instead of making a new frame.
Consider this implementation of factorial.

(define (fact n)
(if (= n 0)
1
(x n (fact (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated.
After calling (fact (- n 1)), the function still needs to multiply that result with
n. The final expression that is evaluated is a call to the multiplication function, not

fact itself. Therefore, the recursive call is not a tail call.

We can rewrite this function using a helper function that remembers the temporary

product that we have calculated so far in each recursive step.

(define (fact n)
(define (fact-tail n result)
(if (=n 0)
result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail, and that recursive call is the
last expression to be evaluated, so it is a tail call. Therefore, fact-tail is a tail
recursive process. We say that a recursive function is tail recursive if all of its

recursive calls are tail calls.

Using a constant number of frames

Tail recursive processes can use a constant amount of memory because each recursive

call frame does not need to be saved.

Our original implementation of fact required the program to keep each frame open
because the last expression multiplies the recursive result with n. Therefore, at each

frame, we need to remember the current value of n.

In contrast, the tail recursive fact-tail does not require the interpreter to remem-
ber the values for n or result in each frame. Instead, we can just update the value
of n and result of the current frame! Therefore, we can keep reusing a single frame

to complete this calculation.
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Tail context

When trying to identify whether a given function call within the body of a function
is a tail call, we look for whether the call expression is in tail context.

Given that each of the following expressions is the last expression in the body of

the function, the following expressions are tail contexts:
e the second or third operand in an if expression

e any of the non-predicate sub-expressions in a cond expression (i.e. the second

expression of each clause)
e the last operand in an and or an or expression
e the last operand in a begin expression’s body
e the last operand in a let expression’s body

For example, in the expression (begin (+ 2 3) (- 2 3) (x 2 3)), (* 2 3) isa

tail call because it is the last operand expression to be evaluated.

Questions

For each of the following functions, identify whether it contains a recursive call in

a tail context. Also indicate if it uses a constant number of frames.

(define (question-b x y)
Af =x0) y
(question-b (- x 1) (+y x))))

(define (question-c x y)
(if & xy)
(question-c (- y 1) x)
(question-c (+ x 10) y)))

(define (question-d n)
(if (question-d n)
(question-d (- n 1))
(question-d (+ n 10))))

(define (question-e n)
(cond ((=n @) 1)
((question-e (- n 1)) (question-e (- n 2)))
(else (begin (print 2) (question-e (- n 3))))))
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Write a tail recursive function that takes in a Scheme list and returns the numerical
sum of all values in the list. You can assume that the list contains only numbers

(no nested lists).

(define (sum 1lst)

Write a tail recursive function that returns the nth fibonacci number. We define
fib(0) = 0 and fib(1) = 1.

(define (fib n)
(define (fib-sofar )

(if

(fib-sofar )

(fib-sofar ))
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4 Extra Questions

4.1 Write a tail recursive function that takes in a number and a sorted list. The function

returns a sorted copy with the number inserted in the correct position.
(a) Begin by writing a tail recursive function that reverses a list.

(define (reverse 1lst)
(define (reverse-sofar lst lst-sofar)

(if (null? 1st)

(b) Next, write a tail recursive function that concatenates two lists together. You

may use reverse.

(define (append a b)
(define (rev-append-tail a b)

(if (null? a)

(¢) Finally, implement insert. You may use reverse and append.

(define (insert n lst)
(define (rev-insert lst rev-1st)

(cond ((null? 1st)

((> (car 1st) n)

(else

))

))

)
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