
CS 61AInterfaces, Linked Lists, and Generators
Fall 2019 Discussion 7: October 16, 2019

1 Interfaces
In computer science, an interface is a shared set of attributes, along with a spec-

ification of the attributes’ behavior. For example, an interface for vehicles might

consist of the following methods:

• def drive(self): Drives the vehicle if it has stopped.

• def stop(self): Stops the vehicle if it is driving.

Data types can implement the same interface in different ways. For example, a Car

class and a Train can both implement the interface described above, but the Car

probably has a different mechanism for drive than the Train.

The power of interfaces is that other programs don’t have to know how each data

type implements the interface – only that they have implemented the interface. The

following travel function can work with both Cars and Trains:

def travel(vehicle):

while not at_destination():

vehicle.drive()

vehicle.stop()

Magic Methods
Python defines many interfaces that can be implemented by user-defined classes.

For example, the interface for arithmetic consists of the following methods:

• def add (self, other): Allows objects to do self + other.

• def sub (self, other): Allows objects to do self - other.

• def mul (self, other): Allows objects to do self * other.

In addition, there is also an interface for sequences:

• def len (self): Allows objects to do len(self).

• def getitem (self, index): Allows objects to do self[i].



2 Interfaces, Linked Lists, and Generators

Questions
1.1 What would Python display?

class A():

def __init__(self, x):

self.x = x

def __repr__(self):

return self.x

def __str__(self):

return self.x * 2

class B():

def __init__(self):

print("boo!")

self.a = []

def add_a(self, a):

self.a.append(a)

def __repr__(self):

print(len(self.a))

ret = ""

for a in self.a:

ret += str(a)

return ret

>>> A("one")

>>> print(A("one"))

>>> repr(A("two"))

>>> b = B()

>>> b.add_a(A("a"))

>>> b.add_a(A("b"))

>>> b

>>> c = A("c")

>>> b.add_a(c)

>>> str(b)



Interfaces, Linked Lists, and Generators 3

1.2 Write the function is palindrome such that it works for any data type that imple-

ments the sequence interface.

Assume that the Link class has implemented the __len__ method and a __getitem__

method which takes in integers.

def is_palindrome(seq):

""" Returns True if the sequence is a palindrome. A palindrome is a sequence

that reads the same forwards as backwards

>>> is_palindrome(Link("l", Link("i", Link("n", Link("k")))))

False

>>> is_palindrome(["l", "i", "n", "k"])

False

>>> is_palindrome("link")

False

>>> is_palindrome(Link.empty)

True

>>> is_palindrome([])

True

>>> is_palindrome("")

True

>>> is_palindrome(Link("a", Link("v", Link("a"))))

True

>>> is_palindrome(["a", "v", "a"])

True

>>> is_palindrome("ava")

True

"""



4 Interfaces, Linked Lists, and Generators

2 Linked Lists
There are many different implementations of sequences in Python. Today, we’ll

explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value

and the rest of the linked list.

To check if a linked list is an empty linked list, compare it against the class attribute

Link.empty:

if link is Link.empty:

print('This linked list is empty!')

else:

print('This linked list is not empty!')

Implementation
class Link:

empty = ()

def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)

self.first = first

self.rest = rest

def __repr__(self):

if self.rest:

rest_str = ', ' + repr(self.rest)

else:

rest_str = ''

return 'Link({0}{1})'.format(repr(self.first), rest_str)

def __str__(self):

string = '<'

while self.rest is not Link.empty:

string += str(self.first) + ' '

self = self.rest

return string + str(self.first) + '>'



Interfaces, Linked Lists, and Generators 5

Questions
2.1 Write a function that takes in a a linked list and returns the sum of all its elements.

You may assume all elements in lnk are integers.

def sum_nums(lnk):

"""

>>> a = Link(1, Link(6, Link(7)))

>>> sum_nums(a)

14

"""

2.2 Write a function that takes in a Python list of linked lists and multiplies them

element-wise. It should return a new linked list.

If not all of the Link objects are of equal length, return a linked list whose length is

that of the shortest linked list given. You may assume the Link objects are shallow

linked lists, and that lst of lnks contains at least one linked list.

def multiply_lnks(lst_of_lnks):

"""

>>> a = Link(2, Link(3, Link(5)))

>>> b = Link(6, Link(4, Link(2)))

>>> c = Link(4, Link(1, Link(0, Link(2))))

>>> p = multiply_lnks([a, b, c])

>>> p.first

48

>>> p.rest.first

12

>>> p.rest.rest.rest is Link.empty

True

"""



6 Interfaces, Linked Lists, and Generators

3 Iterators and Generators
>>> a = [1, 2]

>>> a_iter = iter(a)

>>> next(a_iter)

1

>>> next(a_iter)

2

>>> next(a_iter)

StopIteration

An iterable is a data type which contains a collection of values which can be

processed one by one sequentially. Some examples of iterables we’ve seen include

lists, tuples, strings, and dictionaries. In general, any object that can be iterated

over in a for loop can be considered an iterable.

While an iterable contains values that can be iterated over, we need another type of

object called an iterator to actually retrieve values contained in an iterable. Calling

the iter function on an iterable will create an iterator over that iterable. Each

iterator keeps track of its position within the iterable. Calling the next function

on an iterator will give the current value in the iterable and move the iterator’s

position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the

relationship between a book and a bookmark - an iterable contains the data that is

being iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next

on that iterable will result in a StopIteration exception. In order to be able to

access the values in the iterable a second time, you would have to create a second

iterator.

counts = [1, 2, 3]

for i in counts:

print(i)

items = iter(counts)

while True:

try:

i = next(items)

print(i)

except StopIteration:

break #Exit the while loop

One important application of iterables and iterators is the for loop. We’ve seen

how we can use for loops to iterate over iterables like lists and dictionaries.

This only works because the for loop implicitly creates an iterator using the built-

in iter function. Python then calls next repeatedly on the iterator, until it raises

StopIteration.

The code to the right shows how we can mimic the behavior of for loops using

while loops.

Note that most iterators are also iterables - that is, calling iter on them will return

an iterator. This means that we can use them inside for loops. However, calling

iter on most iterators will not create a new iterator - instead, it will simply return

the same iterator.

We can also iterate over iterables in a list comprehension or pass in an iterable to

the built-in function list in order to put the items of an iterable into a list.

In addition to the sequences we’ve learned, Python has some built-in ways to create

iterables and iterators. Here are a few useful ones:

• range(start, end) returns an iterable containing numbers from start to end-

1. If start is not provided, it defaults to 0.

• map(f, iterable) returns a new iterator containing the values resulting from

applying f to each value in iterable.

• filter(f, iterable) returns a new iterator containing only the values in

iterable for which f(value) returns True.



Interfaces, Linked Lists, and Generators 7

Questions
3.1 What would Python display? If a StopIteration Exception occurs, write StopIteration,

and if another error occurs, write Error.

>>> lst = [6, 1, "a"]

>>> next(lst)

>>> lst_iter = iter(lst)

>>> next(lst_iter)

>>> next(lst_iter)

>>> next(iter(lst))

>>> [x for x in lst_iter]

Generators
>>> def gen_naturals():

... current = 0

... while True:

... yield current

... current += 1

>>> gen = gen_naturals()

>>> gen

<generator object gen at ...>

>>> next(gen)

0

>>> next(gen)

1

A generator function is a special kind of Python function that uses a yield

statement instead of a return statement to report values. When a generator

function is called, it returns a generator object, which is a type of iterator. To the

right, you can see a function that returns an iterator over the natural numbers.

The yield statement is similar to a return statement. However, while a return

statement closes the current frame after the function exits, a yield statement causes

the frame to be saved until the next time next is called, which allows the generator

to automatically keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues

until the next yield statement or the end of the function. A generator function can

have multiple yield statements.

Including a yield statement in a function automatically tells Python that this

function will create a generator. When we call the function, it returns a generator

object instead of executing the body. When the generator’s next method is called,

the body is executed until the next yield statement is executed.



8 Interfaces, Linked Lists, and Generators

>>> square = lambda x: x*x

>>> def many_squares(s):

... for x in s:

... yield square(x)

... yield from map(square, s)

...

>>> list(many_squares([1, 2, 3]))

[1, 4, 9, 1, 4, 9]

When yield from is called on an iterator, it will yield every value from that iter-

ator. It’s similar to doing the following:

for x in an_iterator:

yield x

The example to the right demonstrates different ways of computing the same result.

Questions
3.1 Implement filter link, which takes in a linked list link and a function f and

returns a generator which yields the values of link for which f returns True.

Try to implement this both using a while loop and without using any form of

iteration.

def filter_link(link, f):

"""

>>> link = Link(1, Link(2, Link(3)))

>>> g = filter_link(link, lambda x: x % 2 == 0)

>>> next(g)

2

>>> next(g)

StopIteration

>>> list(filter_link(link, lambda x: x % 2 != 0))

[1, 3]

"""

while _________________________:

if ________________________:

_______________________

___________________________

def filter_no_iter(link, f):

"""

>>> link = Link(1, Link(2, Link(3)))

>>> list(filter_no_iter(link, lambda x: x % 2 != 0))

[1, 3]

"""

if ____________________________:

return



Interfaces, Linked Lists, and Generators 9

elif __________________________:

___________________________

_______________________________

3.2 Implement sum paths gen, which takes in a Tree instance t and and returns a gen-

erator which yields the sum of all the nodes from a path from the root of a tree to

a leaf.

You may yield the sums in any order.

def sum_paths_gen(t):

"""

>>> t1 = Tree(5)

>>> next(sum_paths_gen(t1))

5

>>> t2 = Tree(1, [Tree(2, [Tree(3), Tree(4)]), Tree(9)])

>>> sorted(sum_paths_gen(t2))

[6, 7, 10]

"""

if ___________________________:

yield ____________________

for __________________________:

for __________________________:

yield ____________________


	Interfaces
	Linked Lists
	Iterators and Generators

