
CS 61A Recursion
Fall 2019 Discussion 3: September 18, 2019

1 Recursion
A recursive function is a function that is defined in terms of itself. A good

example is the factorial function. Although we haven’t finished defining

factorial, we are still able to call it since the function body is not evaluated

until the function is called. Note that when n is 0 or 1, we just return 1.

This is known as the base case, and it prevents the function from infinitely

recursing. Now we can compute factorial(2) in terms of factorial(1),

and factorial(3) in terms of factorial(2), and factorial(4) – well, you

get the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: The base case is usually the simplest

input possible to the function. For example, factorial(0) is 1 by

definition. You can also think of a base case as a stopping condition

for the recursion. If you can’t figure this out right away, move on to

the recursive case and try to figure out the point at which we can’t

reduce the problem any further.

2. Make a recursive call with a simpler argument: Simplify your

problem, and assume that a recursive call for this new problem will

simply work. This is called the “leap of faith”. For factorial, we

reduce the problem by calling factorial(n-1).

3. Use your recursive call to solve the full problem: Remember

that we are assuming the recursive call works. With the result of the

recursive call, how can you solve the original problem you were asked?

For factorial, we just multiply (n− 1)! by n.

Note: One way to go understand recursion is to separate out two things: “internal

correctness” and not running forever (known as “halting”).

A recursive function is internally correct if it is always does the right thing assum-

ing that every recursive call does the right thing. For example, the same factorial

function from above but with no base case is internally correct, but does not halt.

A recursive function is correct if and only if it is both internally correct and halts; but

you can check each property separately. The “recursive leap of faith” is temporarily

placing yourself in a mindset where you only check internal correctness.



2 Recursion

Questions
1.1 Write a function that takes two numbers m and n and returns their product.

Assume m and n are positive integers. Use recursion, not mul or *!

Hint: 5*3 = 5 + 5*2 = 5 + 5 + 5*1.

For the base case, what is the simplest possible input for multiply?

For the recursive case, what does calling multiply(m - 1, n) do? What

does calling multiply(m, n - 1) do? Do we prefer one over the other?

def multiply(m, n):

"""

>>> multiply(5, 3)

15

"""



Recursion 3

1.2 Draw an environment diagram for the following code:

def rec(x, y):

if y > 0:

return x * rec(x, y - 1)

return 1

rec(3, 2)

Bonus question: what does this function do?

Note: This problem is meant to help you understand what really goes on

when we make the ”recursive leap of faith”. However, when approaching or

debugging recursive functions, you should avoid visualizing them in this way.



4 Recursion

1.3 Recall the hailstone function from Homework 1. First, pick a positive

integer n as the start. If n is even, divide it by 2. If n is odd, multiply it by

3 and add 1. Repeat this process until n is 1. Write a recursive version of

hailstone that prints out the values of the sequence and returns the number

of steps.

Hint: When taking the recursive leap of faith, consider both the return value

and side effect of this function.

def hailstone(n):

"""Print out the hailstone sequence starting at n, and return the

number of elements in the sequence.

>>> a = hailstone(10)

10

5

16

8

4

2

1

>>> a

7

"""



Recursion 5

1.4 Below is the iterative version of is prime, which returns True if positive

integer n is a prime number and False otherwise:

def is_prime(n):

if n == 1:

return False

k = 2

while k < n:

if n % k == 0:

return False

k += 1

return True

Implement the recursive is prime function. Do not use a while loop, use

recursion. As a reminder, an integer is considered prime if it has exactly two

unique factors: 1 and itself.

def is_prime(n):

"""

>>> is_prime(7)

True

>>> is_prime(10)

False

>>> is_prime(1)

False

"""

def prime_helper(____________________):

if ________________________:

________________________

elif ________________________:

________________________

else:

________________________

return __________________________



6 Recursion

1.5 Write a procedure merge(n1, n2) which takes numbers with digits in de-

creasing order and returns a single number with all of the digits of the two,

in decreasing order. Any number merged with 0 will be that number (treat

0 as having no digits). Use recursion.

Hint: If you can figure out which number has the smallest digit out of

both, then we know that the resulting number will have that smallest digit,

followed by the merge of the two numbers with the smallest digit removed.

def merge(n1, n2):

""" Merges two numbers

>>> merge(31, 42)

4321

>>> merge(21, 0)

21

>>> merge (21, 31)

3211

"""



Recursion 7

1.6 (Optional)

Define a function make fn repeater which takes in a one-argument function

f and an integer x. It should return another function which takes in one

argument, another integer. This function returns the result of applying f to

x this number of times.

Make sure to use recursion in your solution.

def make_func_repeater(f, x):

"""

>>> incr_1 = make_func_repeater(lambda x: x + 1, 1)

>>> incr_1(2) #same as f(f(x))

3

>>> incr_1(5)

6

"""

def repeat(___________________):

if _______________________:

return __________________

else:

return __________________

return _________________________


	Recursion

