Streams

Announcements

Efficient Sequence Processing

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def sum_primes(a, b): def sum_primes(a, b):
total = @ return sum(filter(is_prime, range(a, b)))
X =a

while x < b: sum_primes(1, 6)

if is_prime(x):
total = total + x
X =x+1 source: —»| source: —»| next: B
return total

sum filter range iterator

total: 20 f:is_prime end: 6

Space: Constant Also Constant

(Demo)

Streams

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

(car (cons 1 nil)) 1 (car (cons-stream 1 nil)) 1
(cdr (cons 1 nil)) () (cdr-stream (cons-stream 1 nil)) ()
(cons 1 (cons 2 nil)) (cons-stream 1 (cons-stream 2 nil))

Errors only occur when expressions are evaluated:

(cons 1 (cons (7 10) nil)) ERROR
(cons-stream 1 (cons-stream (/ 1 @) nil)) (1 . #[promise (not forced)])
(car (cons-stream 1 (cons-stream (/ 1 @) nil))) 1
(cdr-stream (cons-stream 1 (cons-stream (/ 1 @) nil))) ERROR
(Demo)

Stream Ranges are Implicit
A stream can give on-demand access to each element in order

(define (range-stream a b)
(if (>= a b)
nil
(cons-stream a (range-stream (+ a 1) b))))
(define lots (range-stream 1 10000000000000000000))
scm> (car lots)
1

scm> (car (cdr-stream lots))

2
scm> (car (cdr-stream (cdr-stream lots)))
3

Infinite Streams

Integer Stream

An integer stream is a stream of consecutive integers

The rest of the stream is not yet computed when the stream is created

(define (int-stream start)
(cons-stream start (int-stream (+ start 1))))

(Demo)

Stream Processing

(Demo)

Recursively Defined Streams
The rest of a constant stream is the constant stream
(define ones (cons-stream 1 ones)) 1111 1 1
Combine two streams by separating each into car and cdr

(define (add-streams s t)
(cons-stream (+ (car s) (car t))
(add-streams (cdr-stream s)
(cdr-stream t))))

o+

(define ints (cons-stream 1 (add-streams ones ints))) 12 3 456 7

Example: Repeats
(define a (cons-stream 1 (cons-stream 2 (cons-stream 3 a))))

(define (f s) (cons-stream (car s)
(cons-stream (car s)
(f (cdr-stream s)))))

(define (g s) (cons-stream (car s)
(f (g (cdr-stream s)))))

what's (prefixag) (1 2 3 1 2 3 1 2,
what's (prefix (Faysyr (1 1 2 2 3 3 1 1,
2 3 3 3 3 1

What's (prefix (g a) 8)? (_1 i

Higher-Order Stream Functions

Higher-Order Functions on Streams
(define (map-$tedam f s)
(if (null? s)
nil
(cons-¢fréamr(f)fcar s))
(map-$tream

£
(cdr-s¥idan <)))))

(define (filter-$tsdam f s)
(if (null? s)

Implementations are identical,
but change cons to cons-stream
and change cdr to cdr-stream

nil
(if (f (car s))
(cons-¢teeam) (car s)
(filter-$tfedm £)J3dr-stream s)))
(filter-$tfedm £)§3dp-stream s)))))

(define (reduce-$teeamaft) start)
(if (null? s)
start
(reduce-$tream f
(cdr-sjream s)
(f start (car s)))))

A Stream of Primes
For any prime k, any larger prime must not be divisible by k.

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n
Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2 3,74, 5,6, 7\&,\\9\1% 11, 12, 13

(Demo)

