Scheme

Announcements

Scheme

Scheme is a Dialect of Lisp

Scheme is a Dialect of Lisp

What are people saying about Lisp?

Scheme is a Dialect of Lisp

What are people saying about Lisp?

"If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."

— Richard Stallman, created Emacs & the first free variant of UNIX

Scheme is a Dialect of Lisp

What are people saying about Lisp?

"If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."

— Richard Stallman, created Emacs & the first free variant of UNIX

"The only computer language that is beautiful."

—Neal Stephenson, DeNero's favorite sci-fi author

Scheme is a Dialect of Lisp

What are people saying about Lisp?

"If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."

— Richard Stallman, created Emacs & the first free variant of UNIX

"The only computer language that is beautiful."

—Neal Stephenson, DeNero's favorite sci-fi author

"The greatest single programming language ever designed."

—-Alan Kay, co-inventor of Smalltalk and OOP (from the user interface video)

Scheme Expressions

Scheme Expressions

Scheme programs consist of expressions, which can be:

Scheme Expressions

Scheme programs consist of expressions, which can be:

* Primitive expressions: 2 3.3 true + quotient

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

> (quotient 10 2)
5

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

> (quotient 10 2) “quotient” names Scheme’s
5 built-in integer division
procedure (i.e., function)

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

> (quotient 10 2) “quotient” names Scheme’s
5 . built-in integer division
> (quotient (+ 8 7) 5) procedure (i.e., function)
3

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

> (quotient 10 2) “quotient” names Scheme’s
5 built-in integer division
; (quotient (+ 8 7) 5) procedure (i.e., function)
> (+ (% 3
(+ (x 2 4)
(+ 35)))

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

_ 2
> (quotient 10 2) < “quotient” names Scheme’s
5 . built-in integer division
; (quotient (+ 8 7) 5) procedure (i.e., function)
(G J
> (+ (% 3)
(+ (+ (% 2 4) < Combinations can span
multiple lines
(+ 35))) (nd 't matter)
(+ (- 10 7) spacing doesn’t matter

S J

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

_ D
> (quotient 10 2) < “quotient” names Scheme’s
5 . built-in integer division
; (quotient (+ 8 7) 5) procedure (i.e., function)

o J
> * 3)
(b (+ (% 2 4) < Combinations can span

multiple lines
(+ 35))) (nd 't matter)
(+ (= 10 7) spacing doesn’t matter

S J

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

_ 2
> (quotient 10 2) < “quotient” names Scheme’s
5 . built-in integer division
; (quotient (+ 8 7) 5) procedure (i.e., function)
(G J
> 3)
(Q:T(+ (% 2 4) < Combinapions can span
multiple lines
(+ 35))) (nd 't matter)
(+ (- 10 7) spacing doesn’t matter

S J

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

_ N
> (quotient 10 2) < “quotient” names Scheme’s
5 . built-in integer division
; (quotient (+ 8 7) 5) procedure (i.e., function)

(G J

> 3)

(QZTQ:T(* 2 4) <{' Combinations can span
(+ 35))) multiple lines

(+ (= 10 7) (spacing doesn’t matter)

S J

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

<
> (quotient 10 2) < “quotient” names Scheme’s
5 . built-in integer division
; (quotient (+ 8 7) 5) procedure (i.e., function)
(G J
2
> (E}[%E}[(* >) N ConiEtians e span
(+ 35))) multiple lines
(+r(= 10 7) (spacing doesn’t matter)

S J

Scheme Expressions

Scheme programs consist of expressions, which can be:
* Primitive expressions: 2 3.3 true + quotient

e Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and @ or more operands in parentheses

<
> (quotient 10 2) < “quotient” names Scheme’s
5 . built-in integer division
; (quotient (+ 8 7) 5) procedure (i.e., function)
(G J
2
> (E}[%E}[(* >) N ConiEtians e span
(+ 35))) multiple lines
(+r(= 10 7) (spacing doesn’t matter)
o J

(Demo)

Special Forms

Special Forms

Special Forms

A combination that is not a call expression is a special form:

Special Forms

A combination that is not a call expression is a special form:

« if expression: (if <predicate> <consequent> <alternative>)

Special Forms

Evaluation:

(1) Evaluate the
predicate expression

(2) Evaluate either
the consequent or
alternative

A combination that is not a call expression is a special form: <:(

« if expression: (if <predicate> <consequent> <alternative>)

Special Forms

A combination that is not a call expression is a special form:
. . . . , <:f Evaluation:
« 1f expression: (if <predicate> <consequent> <alternative>)
(1) Evaluate the
e and and or: (and <el> ... <en>), (or <el> ... <en>) predicate expression

(2) Evaluate either
the consequent or
alternative

Special Forms

A combination that is not a call expression is a special form:

« if expression:
* and and or:

* Binding symbols:

(if <predicate> <consequent> <alternative>)

(and <el> ... <en>), (or <el> ...

(define <symbol> <expression>)

<en>)

J

Evaluation:

(1) Evaluate the
predicate expression
(2) Evaluate either

the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

« if expression:
* and and or:

* Binding symbols:

(if <predicate> <consequent> <alternative>)
(and <el> ... <en>), (or <el> ... <en>)

(define <symbol> <expression>)

> (define pi 3.14)
> (x pi 2)
6.2

J

Evaluation:

(1) Evaluate the
predicate expression
(2) Evaluate either

the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

. . . . , <:f Evaluation:
« 1f expression: (if <predicate> <consequent> <alternative>)
(1) Evaluate the
e and and or: (and <el> ... <en>), (or <el> ... <en>) predicate expression
. . . (2) Evaluate either
e Binding symbols: (define <symbol> <expression>) the consequent or
alternative
\

> (define pi 3.14)< The symbol “pi” is bound to 3.14 in the
> (% pi 2)
6.2

3 global frame

Special Forms

A combination that is not a call expression is a special form:

. . . . , <:f Evaluation:
« 1f expression: (if <predicate> <consequent> <alternative>)
(1) Evaluate the
e and and or: (and <el> ... <en>), (or <el> ... <en>) predicate expression

(2) Evaluate either
the consequent or

New procedures: (define (<symbol> <formal parameters>) <body>) alternative

Binding symbols: (define <symbol> <expression>)

> (define pi 3.14)< The symbol “pi” is bound to 3.14 in the
Z é* pi 2) global frame

Special Forms

A combination that is not a call expression is a special form:
. . . . , <:f Evaluation:
« 1f expression: (if <predicate> <consequent> <alternative>)
(1) Evaluate the
e and and or: (and <el> ... <en>), (or <el> ... <en>) predicate expression

(2) Evaluate either
the consequent or

New procedures: (define (<symbol> <formal parameters>) <body>) alternative

Binding symbols: (define <symbol> <expression>)

> (define pi 3.14)
> (x pi 2)
6.28

The symbol “pi” is bound to 3.14 in the
global frame

> (define (abs x)
(if (< x 0)
(= x)
X))
> (abs -3)

w

Special Forms

A combination that is not a call expression is a special form:
. . . . , <:f Evaluation:
« 1f expression: (if <predicate> <consequent> <alternative>)
(1) Evaluate the
e and and or: (and <el> ... <en>), (or <el> ... <en>) predicate expression

(2) Evaluate either
the consequent or

New procedures: (define (<symbol> <formal parameters>) <body>) alternative

Binding symbols: (define <symbol> <expression>)

> (define pi 3.14)
> (x pi 2)
6.28

The symbol “pi” is bound to 3.14 in the
global frame

> (define (abs x)
(if (< x 0)
(= x)
X))
> (abs -3)

A procedure is created and bound to the
symbol “abs”

w

Special Forms

A combination that is not a call expression is a special form:
. . . . , <:f Evaluation:
« 1f expression: (if <predicate> <consequent> <alternative>)
(1) Evaluate the
e and and or: (and <el> ... <en>), (or <el> ... <en>) predicate expression

(2) Evaluate either
the consequent or

New procedures: (define (<symbol> <formal parameters>) <body>) alternative

Binding symbols: (define <symbol> <expression>)

> (define pi 3.14)
> (x pi 2)
6.28

The symbol “pi” is bound to 3.14 in the
global frame

> (define (abs x)
(if (< x 0)
(= x)
X))
> (abs -3)

A procedure is created and bound to the
symbol “abs”

w

Special Forms

A combination that is not a call expression is a special form:
. . . . , <:f Evaluation:
« 1f expression: (if <predicate> <consequent> <alternative>)
(1) Evaluate the
e and and or: (and <el> ... <en>), (or <el> ... <en>) predicate expression

(2) Evaluate either
the consequent or

New procedures: (define (<symbol> <formal parameters>) <body>) alternative

Binding symbols: (define <symbol> <expression>)

> (define pi 3.14)
> (x pi 2)
6.28

The symbol “pi” is bound to 3.14 in the
global frame

> (define (abs x)
(if (< x 0)
(= x)
X))
> (abs -3)

A procedure is created and bound to the
symbol “abs”

w

(Demo)

Scheme Interpreters

(Demo)

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>)

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>) <{r

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>) <{r

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>) <{r

Two equivalent expressions:

(define (plus4 x) (+ x 4))
(define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>) <{r

Two equivalent expressions:

(define (plus4 x) (+ x 4))
(define plus4 (lambda (x) (+ x 4)))
An operator can be a call expression too:

((lambda (x y z) (+ x y (square z))) 1 2 3)

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>) <{r

Two equivalent expressions:

(define (plus4 x) (+ x 4))
(define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

Evaluates to the
X+y+z2 procedure

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

(lambda (<formal-parameters>) <body>) <{r

Two equivalent expressions:

(define (plus4 x) (+ x 4))
(define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

Evaluates to the
X+y+z2 procedure

Lists

Scheme Lists

Scheme Lists

In the late 1950s, computer scientists used confusing names

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list

e car: Procedure that returns the first element of a list

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list

e car: Procedure that returns the first element of a list
e cdr: Procedure that returns the rest of a list

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list

e car: Procedure that returns the first element of a list
e cdr: Procedure that returns the rest of a list

* nil: The empty list

Scheme Lists

In the late 1950s, computer scientists used confusing names

e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 »_—»(ﬁfﬂ
e car: Procedure that returns the first element of a list

e cdr: Procedure that returns the rest of a list

* nil: The empty list

Scheme Lists

In the late 1950s, computer scientists used confusing names

e CcONS:
e car:
e cdr:

* nil:

Two—-argument procedure that creates a linked list
Procedure that returns the first element of a list
Procedure that returns the rest of a list

The empty list

(cons 2 nil)

— [pi1]

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2

e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2

e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 2 nil) 2

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2

e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

> (cons 1 (cons 2 nil)) 1| —o—| 2

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2

e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

> (cons 1 (cons 2 nil)) 1| —o—| 2
(1 2)

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2

e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

> (cons 1 (cons 2 nil)) 1| —o—| 2
(1 2)
> (define x (cons 1 (cons 2 nil))

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2

e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

> (cons 1 (cons 2 nil)) 1| ——| 2
(12)
>
>

(define x (cons 1 (cons 2 nil))
X

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 »_—»(ﬁfﬂ
e car: Procedure that returns the first element of a list 2
e cdr: Procedure that returns the rest of a list

* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| —o—| 2
1 2)
define x (cons 1 (cons 2 nil))

(
X
12)

>
(
>
>
(

Scheme Lists

In the late 1950s, computer scientists used confusing names

e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 »_—»(ﬁfﬂ
e car: Procedure that returns the first element of a list 2
e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| —o—| 2
1 2)
define x (cons 1 (cons 2 nil))

12)

>
(
>
> X
(
> (car x)

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2

e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| —o—| 2
1 2)
define x (cons 1 (cons 2 nil))

12)

>
(
>
> X
(
> (car x)
1

Scheme Lists

In the late 1950s, computer scientists used confusing names

« cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | =—|nil

e car: Procedure that returns the first element of a list 2

e cdr: Procedure that returns the rest of a list
* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| —o—| 2

X o~

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 »_—»(ﬁfﬂ
e car: Procedure that returns the first element of a list 2
e cdr: Procedure that returns the rest of a list

* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| ——| 2

X o~

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 »_—»(ﬁfﬂ
e car: Procedure that returns the first element of a list 2
e cdr: Procedure that returns the rest of a list

* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| ——| 2
1 2)
define x (cons 1 (cons 2 nil))

>

(

>
> X
(1 2)

> (car x)
1

>

(

>

cons 1 (cons 2 (cons 3 (cons 4 nil))))

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 »_—»(ﬁfﬂ
e car: Procedure that returns the first element of a list 2
e cdr: Procedure that returns the rest of a list

* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| ——| 2
1 2)
define x (cons 1 (cons 2 nil))

>

(

>
> X
(1 2)

> (car x)
1

>

(

>

cons 1 (cons 2 (cons 3 (cons 4 nil)))) 1] e 2| . 3| —1—4

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2
e cdr: Procedure that returns the rest of a list

* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| ——| 2

X o~

s 1 (cons 2 (cons 3 (cons 4 nil)))) 1] e 2| . 3| —1—4
)

Scheme Lists

In the late 1950s, computer scientists used confusing names
e cons: Two—argument procedure that creates a linked list (cons 2 nil) |2 | «—|nil

e car: Procedure that returns the first element of a list 2
e cdr: Procedure that returns the rest of a list

* nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| ——| 2

X o~

s 1 (cons 2 (cons 3 (cons 4 nil)))) 1] e 2| . 3| —1—4
)

(Demo)

Symbolic Programming

Symbolic Programming

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2)
> (list a b)
(1 2)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>

> (define b 2) . e -

> (1list a b) No sign of “a” and “b” in the
(1

2) resulting value
RN

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>
> (define b 2) . e o

> (1list a b) No sign of “a” and “b” in the
(1

2) resulting value
RN

Quotation is used to refer to symbols directly in Lisp.

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>
> (define b 2) . e o

> (1list a b) No sign of “a” and “b” in the
(1

2) resulting value
RN

Quotation is used to refer to symbols directly in Lisp.

> (list 'a 'b)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>
> (define b 2) . e o

> (1list a b) No sign of “a” and “b” in the
(1

2) resulting value
RN

Quotation is used to refer to symbols directly in Lisp.

> (list 'a 'b)
(a b)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>
> (define b 2) . e o

> (1list a b) No sign of “a” and “b” in the
(1

2) resulting value
RN

Quotation is used to refer to symbols directly in Lisp.

> (list 'a 'b)
(a b)
> (list 'a b)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)

> (define b 2) . _

> (1list a b) No sign of “a” and “b” in the
(1 2) resulting value

N

Quotation is used to refer to symbols directly in Lisp.

> (list 'a 'b)
(a b)

> (list 'a b)
(a 2)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) . _
> (1list a b) No sign of “a” and “b” in the
12 resulting value

(1 2) —

Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) . _
> (1list a b) No sign of “a” and “b” in the
12 resulting value

(1 2) —

Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

Quotation can also be applied to combinations to form lists.

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) . _
> (1list a b) No sign of “a” and “b” in the
12 resulting value

(1 2) —

Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

Quotation can also be applied to combinations to form lists.

> '"(a b c)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) . _
> (1list a b) No sign of “a” and “b” in the
12 resulting value

(1 2) —

Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>

> (define b 2) . e o

> (1list a b) No sign of “a” and “b” in the
(1

2) resulting value
RN

Quotation is used to refer to symbols directly in Lisp.

i g Short for (quote a), (quote b):
> (list 'a 'b ’
(a(b;) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>

> (define b 2) . e o

> (1list a b) No sign of “a” and “b” in the
(1

2) resulting value
RN

Quotation is used to refer to symbols directly in Lisp.

i g Short for (quote a), (quote b):
> (list 'a 'b ’
(a(b;) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>
> (define b 2) . e o

> (1list a b) No sign of “a” and “b” in the
(1

2) resulting value
RN

Quotation is used to refer to symbols directly in Lisp.

i g Short for (quote a), (quote b):
> (list 'a 'b ’
(a(b;) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

> '(a b c)

(a b c)

> (car '"(a b c))
a

> (cdr '"(a b c))

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) . _
> (1list a b) No sign of “a” and “b” in the
12 resulting value

(1 2) —

Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

> '(a b c)

(a b c)

> (car '"(a b c))
a

> (cdr '"(a b c))
(b c)

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) . _
> (1list a b) No sign of “a” and “b” in the
12 resulting value

(1 2) —

Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b) Short for (quote a), (quote b):
(a b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

> '"(a b c)
(a b c)
> (car '(a b c))
a
dr ' b
?b(g)r (abc) (Demo)

