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"If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."

— Richard Stallman, created Emacs & the first free variant of UNIX

"The only computer language that is beautiful."

—Neal Stephenson, DeNero's favorite sci-fi author

"The greatest single programming language ever designed."

—-Alan Kay, co-inventor of Smalltalk and OOP (from the user interface video)
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