
Decomposition

Announcements

Modular Design

Separation of Concerns

4

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

4

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Ants Game
Simulator Actions Tunnel

StructureAnts

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

•Order of actions

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Ants Game
Simulator Actions Tunnel

StructureAnts

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

•Order of actions
•Food tracking

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Ants Game
Simulator Actions Tunnel

StructureAnts

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

•Order of actions
•Food tracking
•Game ending conditions

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Ants Game
Simulator Actions Tunnel

StructureAnts

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

•Order of actions
•Food tracking
•Game ending conditions

•Characteristics
of different
ants & bees

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Ants Game
Simulator Actions Tunnel

StructureAnts

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

•Order of actions
•Food tracking
•Game ending conditions

•Characteristics
of different
ants & bees

•Entrances & exits

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Ants Game
Simulator Actions Tunnel

StructureAnts

Separation of Concerns

A design principle: Isolate different parts of a program that address different concerns

A modular component can be developed and tested independently

4

•Game rules
•Ordering of events
•State tracking to
determine the winner

•Event descriptions
•State tracking to
generate commentary

•Decision rules
•Strategy parameters
(e.g., margins & 
 number of dice)

•Order of actions
•Food tracking
•Game ending conditions

•Characteristics
of different
ants & bees

•Entrances & exits
•Locations of insects

Hog Game
Simulator

Game
Commentary

Player
StrategiesHog

Ants Game
Simulator Actions Tunnel

StructureAnts

Example: Restaurant Search

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

{"business_id": "gclB3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ...}

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

{"business_id": "gclB3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "name": "La Cascada Taqueria", "stars": 3.0, "price": 2}

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

{"business_id": "gclB3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "name": "La Cascada Taqueria", "stars": 3.0, "price": 2}

...

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

{"business_id": "gclB3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "name": "La Cascada Taqueria", "stars": 3.0, "price": 2}

...

{"business_id": "gclB3ED6uk6viWlolSb_uA", "user_id": "xVocUszkZtAqCxgWak3xVQ", "stars": 1, "text": 
 "Cafe 3 (or Cafe Tre, as I like to say) used to be the bomb diggity when I first lived in the dorms  
 but sadly, quality has dramatically decreased over the years....", "date": "2012-01-19", ...}

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

{"business_id": "gclB3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "name": "La Cascada Taqueria", "stars": 3.0, "price": 2}

...

{"business_id": "gclB3ED6uk6viWlolSb_uA", "user_id": "xVocUszkZtAqCxgWak3xVQ", "stars": 1, "text": 
 "Cafe 3 (or Cafe Tre, as I like to say) used to be the bomb diggity when I first lived in the dorms  
 but sadly, quality has dramatically decreased over the years....", "date": "2012-01-19", ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "user_id": "84dCHkhWG8IDtk30VvaY5A", "stars": 2, "text": 
 "-Excuse me for being a snob but if I wanted a room temperature burrito I would take one home,  
 stick it in the fridge for a day, throw it in the microwave for 45 seconds, then eat it. NOT go to  
 a resturant and pay like seven dollars for one...", "date": "2009-04-30", ...}

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

{"business_id": "gclB3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "name": "La Cascada Taqueria", "stars": 3.0, "price": 2}

...

{"business_id": "gclB3ED6uk6viWlolSb_uA", "user_id": "xVocUszkZtAqCxgWak3xVQ", "stars": 1, "text": 
 "Cafe 3 (or Cafe Tre, as I like to say) used to be the bomb diggity when I first lived in the dorms  
 but sadly, quality has dramatically decreased over the years....", "date": "2012-01-19", ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "user_id": "84dCHkhWG8IDtk30VvaY5A", "stars": 2, "text": 
 "-Excuse me for being a snob but if I wanted a room temperature burrito I would take one home,  
 stick it in the fridge for a day, throw it in the microwave for 45 seconds, then eat it. NOT go to  
 a resturant and pay like seven dollars for one...", "date": "2009-04-30", ...}

...

Restaurant Search Data

Given the following data, look up a restaurant by name and show related restaurants.

6

(Demo)

{"business_id": "gclB3ED6uk6viWlolSb_uA", "name": "Cafe 3", "stars": 2.0, "price": 1, ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "name": "La Cascada Taqueria", "stars": 3.0, "price": 2}

...

{"business_id": "gclB3ED6uk6viWlolSb_uA", "user_id": "xVocUszkZtAqCxgWak3xVQ", "stars": 1, "text": 
 "Cafe 3 (or Cafe Tre, as I like to say) used to be the bomb diggity when I first lived in the dorms  
 but sadly, quality has dramatically decreased over the years....", "date": "2012-01-19", ...}

{"business_id": "WXKx2I2SEzBpeUGtDMCS8A", "user_id": "84dCHkhWG8IDtk30VvaY5A", "stars": 2, "text": 
 "-Excuse me for being a snob but if I wanted a room temperature burrito I would take one home,  
 stick it in the fridge for a day, throw it in the microwave for 45 seconds, then eat it. NOT go to  
 a resturant and pay like seven dollars for one...", "date": "2009-04-30", ...}

...

Example: Similar Restaurants

Discussion Question: Most Similar Restaurants

8

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

8

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):

8

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

8

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

8

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

 others.______________(______________)

8

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

 others.______________(______________)

 return sorted(others, key=__)__________________

8

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

 others.______________(______________)

 return sorted(others, key=__)__________________

8

sorted(iterable, /, *, key=None, reverse=False)
 Return a new list containing all items from the iterable in ascending order.
 A custom key function can be supplied to customize the sort order, and the
 reverse flag can be set to request the result in descending order.

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

 others.______________(______________)

 return sorted(others, key=__)__________________

8

remove

sorted(iterable, /, *, key=None, reverse=False)
 Return a new list containing all items from the iterable in ascending order.
 A custom key function can be supplied to customize the sort order, and the
 reverse flag can be set to request the result in descending order.

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

 others.______________(______________)

 return sorted(others, key=__)__________________

8

remove self

sorted(iterable, /, *, key=None, reverse=False)
 Return a new list containing all items from the iterable in ascending order.
 A custom key function can be supplied to customize the sort order, and the
 reverse flag can be set to request the result in descending order.

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

 others.______________(______________)

 return sorted(others, key=__)__________________

8

remove self

lambda r: -similarity(self, r)

sorted(iterable, /, *, key=None, reverse=False)
 Return a new list containing all items from the iterable in ascending order.
 A custom key function can be supplied to customize the sort order, and the
 reverse flag can be set to request the result in descending order.

Discussion Question: Most Similar Restaurants

Implement similar, a Restaurant method that takes a positive integer k and a function
similarity that takes two restaurants as arguments and returns a number. Higher similarity
values indicate more similar restaurants. The similar method returns a list containing the
k most similar restaurants according to the similarity function, but not containing self.

def similar(self, k, similarity):
"Return the K most similar restaurants to SELF, using SIMILARITY for comparison."

 others = list(Restaurant.all)

 others.______________(______________)

 return sorted(others, key=__)__________________

8

remove self

lambda r: -similarity(self, r) [:k]

sorted(iterable, /, *, key=None, reverse=False)
 Return a new list containing all items from the iterable in ascending order.
 A custom key function can be supplied to customize the sort order, and the
 reverse flag can be set to request the result in descending order.

Example: Reading Files

(Demo)

Set Intersection

Linear-Time Intersection of Sorted Lists

11

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

def fast_overlap(s, t):
 """Return the overlap between sorted S and sorted T.

 >>> fast_overlap([3, 4, 6, 7, 9, 10], [1, 3, 5, 7, 8])
 2
 """
 i, j, count = 0, 0, 0

 while __:
 if s[i] == t[j]:
 count, i, j = ____________________________
 elif s[i] < t[j]:
 __
 else:
 __
 return count

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

def fast_overlap(s, t):
 """Return the overlap between sorted S and sorted T.

 >>> fast_overlap([3, 4, 6, 7, 9, 10], [1, 3, 5, 7, 8])
 2
 """
 i, j, count = 0, 0, 0

 while __:
 if s[i] == t[j]:
 count, i, j = ____________________________
 elif s[i] < t[j]:
 __
 else:
 __
 return count

i < len(s) and j < len(t)

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

def fast_overlap(s, t):
 """Return the overlap between sorted S and sorted T.

 >>> fast_overlap([3, 4, 6, 7, 9, 10], [1, 3, 5, 7, 8])
 2
 """
 i, j, count = 0, 0, 0

 while __:
 if s[i] == t[j]:
 count, i, j = ____________________________
 elif s[i] < t[j]:
 __
 else:
 __
 return count

i < len(s) and j < len(t)

count + 1, i + 1, j + 1

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

def fast_overlap(s, t):
 """Return the overlap between sorted S and sorted T.

 >>> fast_overlap([3, 4, 6, 7, 9, 10], [1, 3, 5, 7, 8])
 2
 """
 i, j, count = 0, 0, 0

 while __:
 if s[i] == t[j]:
 count, i, j = ____________________________
 elif s[i] < t[j]:
 __
 else:
 __
 return count

i < len(s) and j < len(t)

count + 1, i + 1, j + 1

i = i + 1

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

def fast_overlap(s, t):
 """Return the overlap between sorted S and sorted T.

 >>> fast_overlap([3, 4, 6, 7, 9, 10], [1, 3, 5, 7, 8])
 2
 """
 i, j, count = 0, 0, 0

 while __:
 if s[i] == t[j]:
 count, i, j = ____________________________
 elif s[i] < t[j]:
 __
 else:
 __
 return count

i < len(s) and j < len(t)

count + 1, i + 1, j + 1

i = i + 1

j = j + 1

Linear-Time Intersection of Sorted Lists

11

3 4 6 7 9 10

1 3 5 7 8

Given two sorted lists with no repeats, return the number of elements that appear in both.

def fast_overlap(s, t):
 """Return the overlap between sorted S and sorted T.

 >>> fast_overlap([3, 4, 6, 7, 9, 10], [1, 3, 5, 7, 8])
 2
 """
 i, j, count = 0, 0, 0

 while __:
 if s[i] == t[j]:
 count, i, j = ____________________________
 elif s[i] < t[j]:
 __
 else:
 __
 return count

i < len(s) and j < len(t)

count + 1, i + 1, j + 1

i = i + 1

j = j + 1

(Demo)

Sets

Sets

13

Sets

One more built-in Python container type

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
>>> 'three' in s
True

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
>>> 'three' in s
True
>>> len(s)
4

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
>>> 'three' in s
True
>>> len(s)
4
>>> s.union({'one', 'five'})
{'three', 'five', 'one', 'four', 'two'}

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
>>> 'three' in s
True
>>> len(s)
4
>>> s.union({'one', 'five'})
{'three', 'five', 'one', 'four', 'two'}
>>> s.intersection({'six', 'five', 'four', 'three'})
{'three', 'four'}

13

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
>>> 'three' in s
True
>>> len(s)
4
>>> s.union({'one', 'five'})
{'three', 'five', 'one', 'four', 'two'}
>>> s.intersection({'six', 'five', 'four', 'three'})
{'three', 'four'}
>>> s
{'three', 'one', 'four', 'two'}

13

