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{'three', 'five', 'one', 'four', 'two'}
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Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
>>> 'three' in s
True
>>> len(s)
4
>>> s.union({'one', 'five'})
{'three', 'five', 'one', 'four', 'two'}
>>> s.intersection({'six', 'five', 'four', 'three'})
{'three', 'four'}
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Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets have arbitrary order

>>> s = {'one', 'two', 'three', 'four', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
>>> 'three' in s
True
>>> len(s)
4
>>> s.union({'one', 'five'})
{'three', 'five', 'one', 'four', 'two'}
>>> s.intersection({'six', 'five', 'four', 'three'})
{'three', 'four'}
>>> s
{'three', 'one', 'four', 'two'}
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