Efficiency

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def

" tib(s)

fib(4)

fib(n):
if n ==
return @
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def

memo(f): Keys are arguments that
cache = {} | map to return values

def memoized(n):
if n not in cache:
cacheln] = f(n)

return cachel[n]
returnimemoized ; Same behavior as f,
if f is a pure function

(Demo)

Memoized Tree Recursion

PR T
fib(5)

/

fib(0)

fib(2)

® (Call to fib
@ Found in cache

o Skipped

O

fib(1)

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n): def exp(b, n): Linear time:
if n == 0: " 1 ifn=0 if n == 0: « Doubling the input
return 1 = f return 1 doubles the time
else: b-b"~ ! otherw else: 1024x the input tak
. - . X the input takes
return b x exp(b, n-1) return b x exp(b, n-1) 1024x as much time
def exp_fast(b, n): def exp_fast(b, n): Logarithmic time:
if n==0: if n==0: « Doubling the input
1'fr5t:€r; 1 L frEt:rg 1 increases the time
elif n == 0: . elif n == 0:
return square(exp_fast(b, n//2)) 1 X ifn=0 return square(exp_fast(b, n//2)) . kl)zzixat):?ai:;ui
else: () b= q(b2")? ifnis even else: () increases the time
return b x exp_fast(b, n-1 o . . return b * exp_fast(b, n-1 5
P- b-b""t if nis odd P by only 10 times C
def square(x): def square(x):
return x * x (Demo) return x * x
Quadratic Time
Functions that process all pairs of values in a sequence of length n take quadratic time
3 5 7 6
def overlap(a, b):
count = @ 4 ° ° ° o
for item in a:
Orders of Growth for other in b:
if item == other: 5 0 1 o 0
count += 1
return count 6 0 0 0 1
overlap([3, 5, 7, 6], [4, 5, 6, 5]) 5 0 1 0 (]
(Demo)
.) Time for n+n Time for input n+1 Time for input n
Exponential Time Common Orders of Growth
Tree-recursive functions can take exponential time def fib(n): Exponential growth. E.g., recursive fib -t — (a-b")-b
if n == Incrementing n multiplies time by a constant
return @
fib(5) elif n ==
return 1
else: i
Quadratic growth. E.g., overla
/ \ return fib(n-2) + fib(n-1) 9) d) ’ a-(n+1)2=(a-n?)+a-(2n+1)
fib(3) fib(4) Incrementing n increases time by n times a constant
fib(1) fib(2) /
/ AN fib2) fib(3) Linear growth. »E.g., slow‘exp @ (n+ 1) _ (an> +a
1 fib(e) fib(1) pz N v N Incrementing n increases time by a constant
0‘ ‘1 fib(0) fib(1) fib(1) fib(2)
‘ ‘ Logarithmic growth. E.g., exp_fast
° 1 1 fib(@) fib(1) gart 9 9rr EXP- a-n(2-n) =(a-lnn)+a-mn2
‘ ‘ Doubling n only increments time by a constant
o 1

http://en.wikipedia.org/wiki/File:Fibonacci.ipg

Constant growth. Increasing n doesn't affect time

Space

Space and Environments
Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:
<Environments for any function calls currently being evaluated

+Parent environments of functions named in active environments

(Demo)

Fibonacci Space Consumption

fib(5)
fib(3) fib(4)
/ N
fib(1) fib(2)
‘ e N fib(2) fib(3)
1 fib(0) fib(1) v N v N
‘ ‘ fib(@) i fib 1)“ fib(1) fib(2)
’ ! | | fs N
0 Pl 1 fib(@) fib(1)

Assume we have 0 1
reached this step

Fibonacci Space Consumption

fib(3)
/ N

fib(1) fib(2)

fib(@) fib(1)

fib(4)
fib(2)
N /

Assume we have
reached this step

Has an active environment
Can be reclaimed
Hasn't yet been created

