
Composition

Announcements

Linked Lists

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Link(3, Link(4, Link(5, Link.empty)))

A linked list
is a pair

The first (zeroth)
element is an

attribute value

The rest of the
elements are stored
in a linked list

A class attribute represents
an empty linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

5

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

 empty = ()

6

Some zero-length sequence

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

(Demo)

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Property Methods

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

(Demo)

A @<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

8

No method
calls!

For example, if we want to access the second element of a linked list

Tree Recursion Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

10

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f):

 cache = {}
 def memoized(n):

 if n not in cache:
 cache[n] = f(n)

 return cache[n]
 return memoized

Keys are arguments that
map to return values

Same behavior as f,  
if f is a pure function

12

(Demo)

Memoized Tree Recursion

13

Call to fib

Found in cache
fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Tree Class

Tree Abstraction (Review)

15

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def fib_tree(n):
 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = left.label + right.label
 return Tree(fib_n, [left, right])

(Demo)
16

A Tree has a label and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

def fib_tree(n):
 if n == 0 or n == 1:
 return tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = label(left) + label(right)
 return tree(fib_n, [left, right])

