Composition

Announcements

Linked Lists

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
S, e msmecesEssssscseESesscomEmesnsacsEessnsss . ST T A '._'.'.'.'.'.'.'.'.'.'.v.'.'.'.'.'.'.'.'.'.'.'.':~ """"""""""
. Link instance i i Link instance Link instance i Link.empty:
first: @ 3 é ; first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

Link instance Link instance Link instance Link.empty

3

—L "

4 5

" g

Link(3, Link(4, Link(5, Link.empty)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

empty =i()

P ‘<[Some zero-length sequence :]

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first ~ “opoe s
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.
Link(3, Link(4, Link(5)))

(Demo)

Property Methods

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))
>>> s,second

4

>>>/s.second = 6

>>>1is,second i 7] No method
G e '<<[calls! J
>>> S

Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

A @E<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

(Demo)

Tree Recursion Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n == 1:
return 1
else:
return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f): Keys are arguments that
{Egéﬁé";"¥§“ map to return values

def memoized(n):
if n not in cache:
cache[n] = f(n)

ret“rniwﬁmg}?EQJ<i Same behavior as f, J

if f is a pure function

(Demo)

Memoized Tree Recursion

® Call to fib

" fib(5)

Q
=
O
@©
O
c
-—
o
c
S
o
L
@

O Skipped

" £ib(3)

" fib(3)
/
fib

fib(4)

Tree Class

Tree Abstraction (Review)
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch—bé
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Tree Class

A Tree has a label and a list of branches; each

class Tree:

def init (self, label, branches=[]):

self.label = label
for branch in branches:

assert isinstance(branch, Tree)

self.branches = list(branches)

def fib_tree(n):

if n==0 or n ==
return Tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = left.label + right.label

return Tree(fib_n, [left, right])

(Demo)

branch is a Tree

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
label(tree):
return treel0]
branches(tree):
return tree[1:]
fib tree(n):
if n O or n
return tree(n)

else:
left =

def
def

def

fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, right])

