Mutable Functions

Announcements

Mutable Functions

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

. LN]

.]

“““

. Tay,
*
.
.

0’ \
s Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
\
_ ™
e >>> withdraw(25) <5 Second withdrawal of
Different 50 the same amount
return value! J
L >>> withdraw(60)

"Insufficient funds'

>>> withdraw(15) Where's this balance
35 stored?

>>> withdraw = make_withdraw(100) Within the parent frame A function has a body and
of the function! a parent environment

Persistent Local State Using Environments

-

All calls to the
same function
have the same

parent

Global frame

fl:

f2:

Sk

make_withdraw]
Mmdmw{i

func make_withdraw(balance) [parent=Globall]

func withdraw(amount) [parent=fl]

make_withdraw [parent=Global]

balance
withdraw
Return

value |

withdraw [parent=f1l]

amount
Return

value |

withdraw [parent=fl]

amount

Return
value

pythontutor. com

thdr: local%20ba lanc:
ithdr:

150

— | The parent frame contains the balance,
the local state of the withdraw function

25 Every call decreases the same balance

75 by (a possibly different) amount

25

50

ithdr: :_withdraw28: ithdr

20~

Reminder: Local Assignment

def percent_difference(x, y):

L difference = abs(xy) Assignment binds name(s) to
return 160 * difference / x e NS I RS NCRNGA
diff = percent_difference (40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Global]

percent_difference

fl: percent_difference [parent=Global]
x 40

* difference 10

Execution rule for assignment statements:

1. Evaluate all expressions right of =, from left to right

2. Bind the names on the left to the resulting values in the current frame

urn%20 ifferen if percent_difference%2840, isplaySorigin= ograms. j s&cunulat ive=t rue&py=3&rawInputLstJSON=[]&curInstr=4

pythontutor. com ograms. html#code= percent_differencew28x,%20y ifferen

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

nonlocal balance << the body of the function in which it is re-assigned

def withdraw(amount):
<{: Declare the name "balance" nonlocal at the top of :

if amount > balance:

return 'Insufficient funds'

balance = balance - amount Re-bind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

(Demo)

Non-Local Assignment

The Effect of Nonlocal Statements

nonlocal <name>

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

http://www.python.org/dev/peps/pep—-3104/

The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o'x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
e''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
e'x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x
o''x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

enonlocal x

*'x" is bound in a SyntaxError: name 'x' is parameter and nonlocal
non-local frame

e'"x" also bound locally

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

_balance = balance - amount
return balance 1: Local assignment J

return withdraw

wd
wd (5)

make_withdraw(20)

UnboundLocalError: local variable 'balance’' referenced before assignment

pythontutor.com/
composingprograms.html#code=def%20make_withdraw%28balance%s29%3A%0A%20%20%20%20de f%20withd raws28amount%29%3A%0A%20%20%20%20%20%20%20%201 f%20amount%20>%20balance%s3A%0A%20%20%20%20%20%20%20%20%20%20%20%20 return%s20 ' Insufficient%20funds ' %0A%20%20%20%20%20%20%20%20ba lance%20%3D%20balance%20—
%20amount%0A%20%20%20%20%20%20%20%20 return%20balance%s0A%20%20%20%20 return%s20withd raws0A%0Awithd raw%s20%3D%20make_withdraws2820%29%0Awithd raw%s285%29&mode=display&origin=composingprograms. js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame

make_withdraw_list |

fl:

Name-value binding
cannot change
because there is no
nonlocal statement

(. J

f2: withdraw [parent=f1l]

make_withdraw_list [parent=Global]

func make_withdraw_list(balance) [parent=Global]

withdraw | o
a\\\\\\\ /| 75

Mutable value

can change

\func withdraw(amount) [parent=fl]

WIthdraw » def make_withdraw_list(balance):
b [Name bound [~ P = [balance]
Return | outside of def withdraw(amount):
value withdraw def i amoung > BiSjs "
’ L) return 'Insufficient funds'
1 ———>b[0] = b[O] - amount
E _ement return b[0]
mount |25 assignment return withdraw
ameount | \Fhanges a llsﬁj
Renm |75 withdraw = make_withdraw_list(100)
vale | withdraw(25)

goo.gl/y4TyFZ

Multiple Mutable Functions

(Demo)

Referential Transparency, Lost

-Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

*Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

tttttttttttttttt

mmmmmmmmmmmmmmmmmmmmm

Environment Diagrams

Go Bears!

def oski(bear):
def cal(berk):

nonlocal bear

if‘bear(berk) == 0:
" return [berk+l, berk-1]
. " bear = lambda ley: berk-ley f-”}
x“x return [berk, cal(berk)jﬂi :.é
) return cal(2) >
Eoski(abs) RS -
.. >

Global frame
oski

\

f1: oski [parent=G]

bear
cal

Return Value

J A\

f2: cal

Return Value

[parent=Ff1] <« -

f3: cal

berk

Return Value

[parent=f1]

2

o—

f4: A
ley

Return Value

[parent=f2]

2

0

— =func oski(bear) [parent=G]

////’——"““~—+func A ley)
/Hn‘unc abs(...)

/_\

[parent=f21]
[parent=G]

func cal(berk) [Darent=ﬁ1]

list
0 1

