Box-and-Pointer Notation

The Closure Property of Data Types

- A method for combining data values satisfies the closure property if: The result of combination can itself be combined using the same method
- Closure is powerful because it permits us to create hierarchical structures
- Hierarchical structures are made up of parts, which themselves are made up of parts, and so on

Lists can contain lists as elements (in addition to anything else)

(Demo)

Sequence Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

- sum(iterable[, start]) -> value

Return the sum of an iterable of numbers (NOT strings) plus the value of parameter 'start' (which defaults to 0). When the iterable is empty, return start.
$\max ($ iterable $[$, key=func]) \rightarrow value
With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.
all(iterable) -> bool
Return True if $\operatorname{bool}(\mathrm{x})$ is True for all values x in the iterable. If the iterable is empty, return True.

Tree Abstraction

Recursive description (wooden trees):
A tree has a root and a list of branches Each branch is a tree

Relative description (family trees):

A tree with zero branches is called a leaf Each location in a tree is called a node Each node has a label value One node can be the parent/child of another

People often refer to values by their locations: "each parent is the sum of its children"

Implementing the Tree Abstraction

Tree Processing Uses Recursion
Processing a leaf is often the base case of a tree processing function
The recursive case typically makes a recursive call on each branch, then aggregates
def count_leaves(t):
"""."Count the leaves of a tree."""
if is_leaf(t):

$$
\text { return } 1
$$

else:
branch_counts $=$ [count_leaves (b) for b in branches (t) return sum(branch_counts)

Discussion Question ```Implement leaves, which returns a list of the leaf labels of a tree Hint: If you sum a list of lists, you get a list containing the elements of those lists >>> sum([[1], [2, 3], [4]], []) def leaves(tree): [1, 2, 3, 4] """"Return a list containing the leaves of tree. >>> sum([[1]], []) [1] sum([[[1]], [2]] []) >>> leaves(fib_tree(5)) >>>> \operatorname{sum([[[1]], [2]], []) [1, 0, 1, 0, 1, 1, 0, 1]} [[1], 2] if is_leaf(tree): return [label(tree)] else: return sum(List of leaves for each branch, [])) branches(tree) \\ [b for b in branches(tree)] \\ [branches(b) for \(b\) in branches(tree)] \\ [branches(s) for \(s\) in leaves(tree)] \\ [leaves(b) for \(b\) in branches(tree)] \\ [leaves(s) for \(s\) in leaves(tree)]```

Creating Trees

A function that creates a tree from another tree is typically also recursive
def increment_leaves(t):
"Return a tree like t but with leaf values incremented."" if is_leaf(t):
return tree(label(t) + 1)
else:
=
return tree(label(t), bs)
def increment (t):
""Return a tree like t but with all node values incremented."" return tree(label(t) +1 , [increment(b) for b in branches(t)])
\square

