Tree Recursion

Announcements

Order of Recursive Calls

The Cascade Function

def cascade(n):
if n < 10:
print(n)

else:

print(n)
cascade(n//10)
print(n)

cascade(123)

Program output:

(Demo)

Global frame
cascade

: cascade [parent=Global]
n 123

f2: cascade [parent=Global]
n 12

“Gaiie None

cascade [parent=Global]
1

Return

None
value

func cascade(n) [parent=Global]

- Each cascade frame is from a

different call to cascade.

< Until the Return value appears,

that call has not completed.

- Any statement can appear before

or after the recursive call.

Two Definitions of Cascade

(Demo)
def cascade(n): def cascade(n):

if n < 10: print(n)
print(n) if n >= 10:

else: cascade(n//10)
print(n) print(n)
cascade(n//10)
print(n)

« If two implementations are equally clear, then shorter is usually better

- In this case, the longer implementation is more clear (at least to me)

- When learning to write recursive functions, put the base cases first

« Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

Inverse Cascade

Write a function that prints an inverse cascade:

1 def inverse_cascade(n):
12 grow(n)

rint(n)
13;4 rs)hrink(n)
1%3 def f_then_g(f, g, n):

if n:
1 f(n)

g(n)
grow = lambda n: f_then_g(

shrink = lambda n: f_then_g(

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

n: o,1,2, 3, 4,5,6, 7, 8, ey 35

fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, wee s 9,227,465

def fib(n):
if n == 0:
return 0
elif n == 1:

http://en.wikipedia.orq/wiki/File:Fibonacci.ipg

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

L
fib(4)

fib(2)

fib(1)

fib(0) fib(1)

fib(Q)

|
0

fib(1)

1

(Demo)

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

fib(5)
fib(3) fib(4)
/ N
fib(1) fib(2)
‘ . e N fib(2) fib(3)
1 fib(o) fib(1) Ny v N
‘ ‘ fib(0) fib(1) fib(1) fib(2)
! ! | | s N
0 1 1 fib(0) fib(1)
] 1

(We will speed up this computation dramatically in a few weeks by remembering results)

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

2+4=6

1+1+4=6

3+3=6

1+2+3=6
1+1+1+3=6
2+2+2=6
1+1+2+2=6
1+1+1+1+2=6
1+1+1+1+1+1=6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in non-
decreasing order.

count_partitions(6, 4)

*Recursive decomposition: finding
simpler instances of the problem.

-Explore two possibilities:
< Use at least one 4

-Don't use any 4

-Solve two simpler problems:
- count_partitions(2, 4)---

- count_partitions(6, 3)

“Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

“Recursive decomposition: finding

def count_partitions(n, m):
simpler instances of the problem. == 0:

. return 1
“Explore two possibilities: elif n < 0:
- Use at least one 4 _ return @
elif m == 0:
+Don't use any 4 return 0
+Solve two simpler problems: else:

» with m = count_partitions(n-m, m)
» without_m = count_partitions(n, m-1)
return with_m + without m

- count_partitions(2, 4)

- count_partitions(6, 3)

“Tree recursion often involves
exploring different choices.
(Demo)

