
Design

Announcements

Abstraction

Functional Abstractions

!4

Functional Abstractions

def square(x):
 return mul(x, x)

!4

Functional Abstractions

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument. Yes

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

Yes

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

Yes

No

Yes

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

Yes

No

Yes

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

def square(x):
 return pow(x, 2)

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still work identically.

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!4

Choosing Names

!5

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!5

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!5

Names should convey the meaning or purpose
of the values to which they are bound.

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!5

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!5

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!5

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

!5

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

!5

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

!5

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

!5

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

!5

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

l, I, O k, i, m

Which Values Deserve a Name

Reasons to add a new name

!6

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

!6

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

!6

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

!6

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

!6

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

!6

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!6

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!6

More Naming Tips

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!6

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!6

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc. 
 
n, k, i - Usually integers 
x, y, z - Usually real numbers 
f, g, h - Usually functions

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!6

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc. 
 
n, k, i - Usually integers 
x, y, z - Usually real numbers 
f, g, h - Usually functions

PRAC
TICA

L

GUID
ELIN

ES

Function Example: Sounds

WAV Files

!8https://en.wikipedia.org/wiki/Triangle_wave 
https://en.wikipedia.org/wiki/Sampling_(signal_processing)

WAV Files

The Waveform Audio File Format
encodes a sampled sound wave

!8https://en.wikipedia.org/wiki/Triangle_wave 
https://en.wikipedia.org/wiki/Sampling_(signal_processing)

WAV Files

The Waveform Audio File Format
encodes a sampled sound wave

!8https://en.wikipedia.org/wiki/Triangle_wave 
https://en.wikipedia.org/wiki/Sampling_(signal_processing)

WAV Files

The Waveform Audio File Format
encodes a sampled sound wave

!8https://en.wikipedia.org/wiki/Triangle_wave 
https://en.wikipedia.org/wiki/Sampling_(signal_processing)

A triangle wave is the simple wave
form with the most pleasing sound

WAV Files

The Waveform Audio File Format
encodes a sampled sound wave

!8https://en.wikipedia.org/wiki/Triangle_wave 
https://en.wikipedia.org/wiki/Sampling_(signal_processing)

A triangle wave is the simple wave
form with the most pleasing sound

WAV Files

The Waveform Audio File Format
encodes a sampled sound wave

!8https://en.wikipedia.org/wiki/Triangle_wave 
https://en.wikipedia.org/wiki/Sampling_(signal_processing)

A triangle wave is the simple wave
form with the most pleasing sound

(Demo)

