lteration

Announcements

Return

Return Statements

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

f(x) for user-defined function f: switch to a new environment; execute f's body

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of N in reverse order until D 1is found.

>>> end(34567, 5)
7

6
5

mimn

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of N in reverse order until D 1is found.

>>> end(34567, 5)
7

6
5

mimn

while n > @:
last, n=n% 10, n // 10
print(last)

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of N in reverse order until D 1is found.

>>> end(34567, 5)
7

6
5

mimn

while n > O:
last, n=n% 10, n // 10
print(last)
if d == last:
return None

Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of N in reverse order until D 1is found.

>>> end(34567, 5)
7

6
5

mimn

while n > 0:
last, n=n% 10, n // 10
print(last)
if d == last:

return None
(Demo)

Self-Reference

(Demo)

Frames Objects

Return|ng a FunCt|On US|ng ItS Own Name Global frame func print_sums(n) [parent=Globall
print_sums func next_sum(k) [parent=fl]
def pr..int Sums(n) . fl: print_sums [parent=Global] func next_sum(k) [parent=f3]
— N E
J func next_sum(k) [parent=f5]
- pr1nt(n) next_sum |
dEf next_sum(k) . Rettljrn t
value
return print_sums(n+k)
return neXt sum f2: next_sum [parent=f1l]
Return t
. value
—) print_sums (1) (3) (5)
f3: print_sums [parent=Global]
n |4
next_sum L
Return
value
f4: next_sum [parent=f3]
k5
f5: print_sums [parent=Global]
n ‘9
next_sum L
Return
value |
http://pythontutor. com/composingprograms. html#code=def%20print_: print: %20next_ urn%20print_: turns20next_: int_sums%28’ unulative=truecurInstr=t =display&origin=c grams. j s&py=3&rawInputlLstISON=%5B%50D

Control

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

if

else:

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

if

else:

Execution Rule for Conditional Statements:

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

if

else:

Execution Rule for Conditional Statements:

Each clause is considered in order.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

if

else:

Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

if

else:

Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

P 1f
Ilifll g l
clause [i

else:

Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

Ilifll é lf
clause [i
i
nalse" éelse:
clause [i
i

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

I : "if" header
Pt k expression

1 i.’:ll
clause

"else"
clause

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
. ; "1if" header
v e if k expression
if P T ‘)
clause [i : : _ . N
i T "if" suite
nalse" éelse:
clause [
i

Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
. ; "1if" header
nign glf! _______________________________ i expression |
clause [i : : _ . N
i ' "if" suite
v J
i else:
Ilelsell E . \
clause : "else" suite
: J
A

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
. ; "1if" header
nign glf! _______________________________ i expression |
clause [i ; : _ . N
i ' "if" suite
v J
i else:
Ilelsell E . \
clause : "else" suite
: J
A

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
. ; "1if" header
nign glf! _______________________________ i expression |
clause [i ; : _ . N
i ey "if" suite if (,
v / f—
: else:
Ilelsell E . \
clause [i "else" suite
i J
A

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

EmEosessssssssses, \
. ; "1if" header
:if 5 expression
11 5 11 e v
if P T Y, R
clause [: ; 5 _ . B :
i T "if" suite if_(Y
j T Mmoo ’
nalse" : else: _
else : nelse" suite) "if" header
clause :) expression
A

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e Esessssesses, \
. ; "1if" header
ng g élf: _______________________________ k expression)
clause [i : : _ ,) i I ‘
i T "if" suite) if_(Y
“else" else: N\ 1naen
: A s "else" suite if" header
clause [; !) expression
H \ .

...............

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
. 1 ; "if" header
v e 1f : expression
if il irirlriislel)
clause [i : : _ . N E
i e —— "if" suite) if_¢ Y
“else" else: N\ 1naen
SUTTTTEETEETTT . "alse" suite if header
clause [i : : g expression
i ' :

...............

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

R, N : :
.o : "if" header ghls Tg”Ct?OE
n g pif i expression oesn T exis
L P e J \/ .. L I
clause [: ; 5 _ _ B] :
i e —— "if" suite if_¢ Y
v J — N 2
nalse" : else: .
. |) 1
1 : proTT | welse suite if" header
ctause ¢ : :) expression
A I]

...............

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
. 1 ; "if" header
. P 1f k expression
lf P oo)
clause [i : : _ . N
i —s "if" suite
- J
i else:
"else" . ‘)
clause : E ! "else" suite
: : : J
A A}

...............

Execution Rule for Conditional Statements:

Each clause is considered in order.

1.

2.

Evaluate the header's expression (if present).

If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

|

This function
doesn't exist

def if (c, t, f):
if c:

.............

|

"if" header
expression

If Statements and Call Expressions

| _ _ _ def if_(c, t, f):
Let's try to write a function that does the same thing as an if statement. if c:
. t
(mreeeeeeeeaany : "if" header This function else:
Tif! h expression doesn't exist f
||i1:|| Ry yye———— v

...............

clause

i —{ "if" suite

U

. o felser 00|
else : . : nelse! it "if" header
clause [i i 5 sLeEs SRRE expression
Execution Rule for Conditional Statements: Evaluation Rule for Call Expressions:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
. ; "1if" header
nign glf! _______________________________ i expression |
clause [i ; : _ . N
i ' "if" suite
v J
i else:
Ilelsell E . \
clause : "else" suite
: J
A

Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

def if (c, t, f):
if c:
t
This function else:
doesn't exist f
\/ ST ' T
if_(|

.............

"if" header
expression

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
-] "if" header
nign glf! _______________________________ i expression |
clause [i ; : _ . N
i ' "if" suite
v J
i else:
Ilelsell E . \
clause : "else" suite
: J
A

Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

def if (c, t, f):
if c:
t
This function else:
doesn't exist f
\/ JERRREREREEREN —memmmmaaean,
if ¢ :

.............

"if" header
expression

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

2. Apply the function that is the

value of the operator
to the arguments that are the
values of the operands

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

e,)
-] "if" header
nign glf! _______________________________ i expression |
clause [i ; : _ . N
i ' "if" suite
v J
i else:
Ilelsell E . \
clause : "else" suite
: J
A

Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),

execute the suite & skip the remaining clauses.

(Demo)

def if (c, t, f):
if c:
t
This function else:
doesn't exist f
\/ JERRREREREEREN —memmmmaaean,
if ¢ :

.............

"if" header
expression

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

2. Apply the function that is the

value of the operator
to the arguments that are the
values of the operands

Control Expressions

Logical Operators

Logical Operators

To evaluate the expression <left> and <right>:

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

Logical Operators

To evaluate the expression <left> and <right>:
1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

Logical Operators

To evaluate the expression <left> and <right>:
1. Evaluate the subexpression <left>.
2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

Logical Operators

To evaluate the expression <left> and <right>:
1. Evaluate the subexpression <left>.
2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

Logical Operators

To evaluate the expression <left> and <right>:
1. Evaluate the subexpression <left>.
2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

Logical Operators

To evaluate the expression <left> and <right>:
1. Evaluate the subexpression <left>.
2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:
1. Evaluate the subexpression <left>.

2. If the result is a true value v, then the expression evaluates to v.

Logical Operators

To evaluate the expression <left> and <right>:
1. Evaluate the subexpression <left>.
2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:
1. Evaluate the subexpression <left>.
2. If the result is a true value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

Logical Operators

To evaluate the expression <left> and <right>:
1. Evaluate the subexpression <left>.
2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:
1. Evaluate the subexpression <left>.
2. If the result is a true value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

(Demo)

Conditional Expressions

Conditional Expressions

A conditional expression has the form

<consequent> if <predicate> else <alternative>

Conditional Expressions

A conditional expression has the form
<consequent> if <predicate> else <alternative>

Evaluation rule:

Conditional Expressions

A conditional expression has the form
<consequent> if <predicate> else <alternative>
Evaluation rule:

1. Evaluate the <predicate> expression.

Conditional Expressions

A conditional expression has the form

<consequent> if <predicate> else <alternative>

Evaluation rule:
1. Evaluate the <predicate> expression.

2. If it's a true value, the value of the whole expression is the value of the <consequent>.

Conditional Expressions

A conditional expression has the form

<consequent> if <predicate> else <alternative>

Evaluation rule:
1. Evaluate the <predicate> expression.
2. If it's a true value, the value of the whole expression is the value of the <consequent>.

3. Otherwise, the value of the whole expression is the value of the <alternative>.

Conditional Expressions

A conditional expression has the form
<consequent> if <predicate> else <alternative>
Evaluation rule:
1. Evaluate the <predicate> expression.
2. If it's a true value, the value of the whole expression is the value of the <consequent>.

3. Otherwise, the value of the whole expression is the value of the <alternative>.

>>> X = 0
>>> abs(1l/x if x != @ else 0)
%)

