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A return statement completes the evaluation of a call expression and provides its value:
f(x) for user-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
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last, n=n% 10, n // 10
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Return Statements

A return statement completes the evaluation of a call expression and provides its value:
f(x) for user-defined function f: switch to a new environment; execute f's body
return statement within f: switch back to the previous environment; f(x) now has a value
Only one return statement is ever executed while executing the body of a function

def end(n, d):
"""Print the final digits of N in reverse order until D 1is found.

>>> end(34567, 5)
7

6
5

mimn

while n > 0:
last, n=n% 10, n // 10
print(last)
if d == last:

return None
(Demo)



Self-Reference

(Demo)



Frames Objects

Return|ng a FunCt|On US|ng ItS Own Name Global frame func print_sums(n) [parent=Globall
print_sums func next_sum(k) [parent=fl]
def pr..int Sums(n) . fl: print_sums [parent=Global] func next_sum(k) [parent=f3]
— N E
J func next_sum(k) [parent=f5]
- pr1nt(n) next_sum |
dEf next_sum(k) . Rettljrn t
value
return print_sums(n+k)
return neXt sum f2: next_sum [parent=f1l]
Return t
. value
—) print_sums (1) (3) (5)
f3: print_sums [parent=Global]
n |4
next_sum L
Return
value
f4: next_sum [parent=f3]
k5
f5: print_sums [parent=Global]
n ‘9
next_sum L
Return
value |
http://pythontutor. com/composingprograms. html#code=def%20print_: print: %20next_ urn%20print_: turns20next_: int_sums%28’ unulative=truecurInstr=t =display&origin=c grams. j s&py=3&rawInputlLstISON=%5B%50D
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Let's try to write a function that does the same thing as an if statement.

e, )
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clause [ i ; : _ . N
i ey "if" suite if ( ,
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: else:
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Execution Rule for Conditional Statements:

Each clause is considered in order.
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execute the suite & skip the remaining clauses.
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Let's try to write a function that does the same thing as an if statement.

EmEosessssssssses, \
. ; "1if" header
:if 5 expression
11 5 11 e v
if P T Y, R
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Let's try to write a function that does the same thing as an if statement.
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Let's try to write a function that does the same thing as an if statement.
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Let's try to write a function that does the same thing as an if statement.
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Let's try to write a function that does the same thing as an if statement.
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. 1 ; "if" header
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i else:
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Execution Rule for Conditional Statements:

Each clause is considered in order.

1.

2.

Evaluate the header's expression (if present).

If it is a true value (or an else header),
execute the suite & skip the remaining clauses.
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This function
doesn't exist

def if (c, t, f):
if c:

.............

|
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| _ _ _ def if_(c, t, f):
Let's try to write a function that does the same thing as an if statement. if c:
. t
(mreeeeeeeeaany : "if" header This function else:
Tif! h expression doesn't exist f
||i1:|| Ry yye———— v

...............

clause

i —{ "if" suite

U

. o felser 00|
else : . : nelse! it "if" header
clause [ i i 5 sLeEs SRRE expression
Execution Rule for Conditional Statements: Evaluation Rule for Call Expressions:

Each clause is considered in order.
1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.
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Let's try to write a function that does the same thing as an if statement.
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Let's try to write a function that does the same thing as an if statement.
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Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),

execute the suite & skip the remaining clauses.
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Conditional Expressions

A conditional expression has the form
<consequent> if <predicate> else <alternative>
Evaluation rule:
1. Evaluate the <predicate> expression.
2. If it's a true value, the value of the whole expression is the value of the <consequent>.

3. Otherwise, the value of the whole expression is the value of the <alternative>.

>>> X = 0
>>> abs(1l/x if x != @ else 0)
%)



