Functions

About the Course

The 61A Community

57 teaching assistants (TAs), formally known at Berkeley as GSIs or UGSIs:

- Teach lab \& discussion sections
- Hold drop-in office hours
- Lots of other stuff: develop assignments, grade exams, etc.

50+ mentors:

- Teach mentoring sections
- Hold drop-in office hours
- Lots of other stuff: homework parties, mastery sections, etc.

200+ academic interns help answer individual questions during lab

2,000 fellow students make CS 61A unique

Parts of the Course

Lecture: Videos posted to cs61a.org before each live lecture
Lab section: The most important part of this course (next week)
Discussion section: The most important part of this course (this week)
Staff office hours: The most important part of this course (next week)
Online textbook: http://composingprograms.com

Weekly homework assignments, three exams, \& four programming projects
Lots of optional special events to help you complete all this work

Everything is posted to cs61a.org

Announcements

An Introduction to Computer Science

What is Computer Science?

The study of	What problems can be solved using computation, How to solve those problems, and What techniques lead to effective solutions	
Systems		
Artificial Intelligence	Decision Making	
Graphics	Robotics	
Security	Natural Language Processing	Answering Questions
Networking		
Programming Languages		Translation
Theory		' ' '
Scientific Computing		

What is This Course About?

A course about managing complexity

Mastering abstraction
Programming paradigms
An introduction to programming
Full understanding of Python fundamentals
Combining multiple ideas in large projects
How computers interpret programming languages

Different types of languages: Scheme \& SQL

A challenging course that will demand a lot of you
x Fob

Alternatives to CS 61A

CS 10: The Beauty and Joy of Computing

Designed for students without prior experience
A programming environment created by Berkeley, now used in courses around the world and online

An introduction to fundamentals (\& Python) that sets students up for success in CS 61A

Fall 2018: Dan Garcia
25 seats available

More info: http://cs10.org/fa18/

Data Science 8: Foundations of Data Science

Fundamentals of computing, statistical inference, \& machine learning applied to real-world data sets

More statistics than computer science
Great programming practice for CS 61A
Listed as CS C8
This semester it's full
More info: http://data8.org/fa18

Course Policies

Course Policies

Learning

Community

Course Staff

Details...

http://cs61a.org/articles/about.html

Collaboration

Asking questions is highly encouraged

-Discuss everything with each other; learn from your fellow students!

- Some projects can be completed with a partner
- Choose a partner from your discussion section

The limits of collaboration

- One simple rule: Don't share your code, except with your project partner
- Copying project solutions causes people to fail the course
- We really do catch people who violate the rules, because...
-We also know how to search the web for solutions
-We use computers to check your work

Build good habits now

Expressions

Types of expressions

An expression describes a computation and evaluates to a value

$18+69$	$\frac{6}{23}$ 2^{100} $7 \bmod 2$ $\|-1869\|$$\sum_{i=1}^{100} i$	$\sin \pi$
$\log _{2} 1024$		
$\binom{69}{18}$	$\lim _{x \rightarrow \infty} \frac{1}{x}$	

Call Expressions in Python

All expressions can use function call notation (Demo)

Anatomy of a Call Expression

Operators and operands are also expressions

So they evaluate to values

Evaluation procedure for call expressions:

1. Evaluate the operator and then the operand subexpressions
2. Apply the function that is the value of the operator to the arguments that are the values of the operands

Evaluating Nested Expressions

Evaluating Nested Expressions

Functions, Values, Objects, Interpreters, and Data
(Demo)

