CS 61A Final Exam Study Guide — Page 1

Exceptions are raised with a raise statement.
raise <expr>

<expr> must evaluate to a subclass of BaseException or an instance of one.

try:
<try suite>

except <exception class> as <name>:
<except suite>

>>> try:

x = 1/0
except ZeroDivisionError as e:

print('handling a', type(e))
x =0

The <try suite> is executed first.

If, during the course of executing the |handling a <class

<try suite>, an exception is raised >>> X

that is not handled otherwise, and 0

'ZeroDivisionError'>

If the class of the exception inherits from <exception class>, then
The <except suite> is executed, with <name> bound to the exception.

(car (cons 1 nil)) —> 1
(cdr (cons 1 nil)) — ()
(cons 1 (cons (/ 1 @) nil)) —> ERROR

A stream is a Scheme pair, but
the cdr is evaluated lazily

K) o |

(car (cons-stream 1 nil)) —> 1 1
(cdr-stream (cons-stream 1 nil)) -> () ¢ \ 4
(car
(cons-stream 1 (cons-stream (/ 1 @) nil))) -> 1 car cdr-stream
(cdr-stream Stored Evaluated
(cons-stream 1 (cons-stream (/ 1 @) nil))) -> ERROR oyxpiicitly lazily

(define (range-stream a b)
(if (>= a b)
nil J
(cons-stream a (range-stream (+ a 1) b))))
(define lots (range-stream 1 10000000000000000000))
scm> (car lots)
1

scm> (car (cdr-stream lots))

2

scm> (car (cdr-stream (cdr-stream lots)))
3

(define ones (cons-stream 1 ones)) 1 1
(define (add-streams s t) H H
(cons-stream (+ (car s) (car t)) + +
(add-streams (cdr-stream s) [N
(cdr-stream t)))) L SR
(define ints (cons-stream 1 (add-streams ones ints))) 1 2 3

(define (map-stream f s)
(if (null? s)
nil
(cons-stream (f (car s))
(map-stream f
(cdr-stream s)))))

(define (filter-stream f s)
(if (null? s)
nil
(if (f (car s))
(cons-stream (car s)
(filter-stream f (cdr-stream s)))
(filter-stream f (cdr-stream s)))))

(define size 5) ; => size

(* 2 size) ; => 10

(if (> size @) size (- size)) ; => 5

(cond ((> size @) size) ((= size @) @) (else (- size))) ; => 5
((lambda (x y) (+ x y size)) size (+ 1 2)) ; => 13
(let ((a size) (b (+ 1 2))) (* 2 a b)), => 30
(map (lambda (x) (+ x size)) (quote (2 3 4))) ; =>
(filter odd? (quote (2 3 4))) ; => (3)

(list (cons 1 nil) size 'size) ; => ((1) 5 size)
(list (equal? 1 2) (null? nil) (= 3 4) (eq? 5 5)) ; =>
(list (or #f #t) (or) (or 1 2)) ; => (#t #f 1)

(list (and #f #t) (and) (and 1 2)) ; => (#f #t 2)
(append (1 2) '(3 4)) ; => (1234)
(not (> 12)) ; => #t

(begin (define x (+ size 1)) (* x 2)) ; =>

(7 89)

(#f #t #f #t)

12

The built-in Scheme list data structure can represent combinations

scm> (list 'quotient 10 2)
(quotient 10 2)

A macro is an operation performed on source code before evaluation

scm> (eval (list 'quotient 10 2))
5

(define-macro (twice expr
(list 'begin expr expr))

> (twice (print 2))
2

2

Evaluation procedure of a macro call expression:

* Evaluate the operator sub-expression, which evaluates to a macro

« Call the macro procedure on the operand expressions

e Evaluate the expression returned from the macro procedure

scm> (map (lambda (x) (x x x)) '(2 3)) scm> (for x '(2 3) (*x x x))

(4 9) (4 9)

(define-macro (for sym vals expr) OR (define-macro (for sym vals expr

(list 'map (list 'lambda “(map (lambda (,sym) ,expr) ,vals))

(list sym)
expr) vals))

“(+ size (- ,size) ,(* 3 4)) ; => (+ size (- 5) 12)
;5 Return a copy of s reversed. ;5 Apply fn to each element of s.
(define (reverse s) (define (map fn s)
(define (iter s r) (define (map-reverse s m)
(if (null? s) r (if (null? s) m
(iter (cdr s) (map-reverse
(cons (car s) r)))) (cdr s)
(iter s nil)) (cons (fn (car s)) m))))
(reverse (map-reverse s nil)))
IA table has columns and rows] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Latitude Longitude Name A column
has a
38 122 i Berkeley ... TETE Endl
42 71 Cambridge a type
""""" A 45T s

(A row has a value for each column)

SELECT !
SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];
CREATE TABLE parents AS

SELECT "abraham" AS parent, "barack" AS child UNION LELLT]
SELECT "abraham" , "clinton" UNION H E -
SELECT "delano" , "herbert" UNION fanan
SELECT "fillmore" , "abraham" UNION l
SELECT "fillmore" , 'delano" UNION
SELECT "fillmore" , "grover" UNION
SELECT "eisenhower" , "fillmore";

CREATE TABLE dogs AS

A procedure call that has not yet returned is active. Some procedure

calls are tail calls. A Scheme interpreter should support an unbounded
number of active tail calls.

A tail call is a call expression in a tail context, which are:

The last body expression in a lambda expression

Expressions 2 & 3 (consequent & alternative) in a tail context if
All non-predicate sub-expressions in a tail context cond

The last sub-expression in a tail context and, or, begin, or let

(define (factorial n k)

ne) k i i
(factorial (- n 1)

(define (length s)
i).

(length (cdr s)

—
SELECT "abraham" AS name, "long" AS fur UNION 1A
SELECT "barack" , "short" UNION =
SELECT “clinton" , "long" UNION 7\
SELECT "delano" , "long" UNION g"="1
SELECT "eisenhower" , "short" UNION H B H
SELECT "fillmore" , "curly" UNION wusmm
SELECT "grover" , "short" UNION
SELECT "herbert" , "curly"; First Second
SELECT a.child AS first, b.child AS second Lorack chen
FROM parents AS a, parents AS b abraham elano
WHERE a.parent = b.parent AND a.child < b.child; | @abraham grover
delano grover
The number of groups is the number of unique values of an expression
A having clause filters the set of groups that are aggregated
select weight/legs, count(x) from animals
group by weight/legs kind legs | weight
having count(x)>1;
weight/ | oo e . weight/legs=5 dog 4 20
legs .’ i t 4 10
x’ . weight/legs=2 ca
5 2 ® P
‘)‘:"_¢ - weight/'l_egs:Z ferret 4 10
S
2 2 ‘. weight/legs=3 parrot 2 6
.
* weight/legs=5 penguin 2 10
weight/1egs=6000 | trex 2 12000
CREATE TABLE ints(n UNIQUE, prime DEFAULT 1); n prime
INSERT INTO ints VALUES (2, 1), (3, 1); 2 1
INSERT INTO ints(n) VALUES (4), (5), (6), (7), (8); 3 1
UPDATE ints SET prime=0 WHERE n > 2 AND n % 2 = 0; 5 1
DELETE FROM ints WHERE prime=0; 7 1

Not a tail call

(define (length-tail s)
(define (length-iter s n)
(if_(nul
{len
(length-iter s 0)

(;Escursive call is a tail call)

The way in which names are looked up in
called lexical scope (or static scope).

Scheme and Python is

Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)

Dynamic scope: The parent of a frame is
which a procedure was called. (mu ...)

the environment in

> (define f (mu (x) (+ x y)))

> (define g (lambda (x y) (f (+ x x))))
> (g 37)

13

CS 61A Final Exam Study Guide — Page 2 A basic interpreter has two parts: a parser and an evaluator.

3 X X scheme_reader.py scalc.py
Scheme programs consist of expressions, which can be:

e Primitive expressions: 2. 3.3 true + quotient) .
* Combinations: (quotient 10 2), (not true) lines Parser expression Evaluator value
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and @ or more operands.

)) . .)) (+22) Pair('+', Pair(2, Pair(2, nil))) 4
A combination that is not a call expression is a special form:
* If expression: (if <predicate> <consequent> <alternative>)
* Binding names: (define <name> <expression>) T (1 Pair('s', Pair(Pair('+', ...)))
» New procedures: (define (<name> <formal parameters>) <body>) ‘ (- 23) printed as 4
(x 4 5.6))"
> (define pi 3.14) > (define (abs x) 10 G123 (x45.0) 10)
> (x pi 2) (if (< x 0)
6.28 (= x) :igize;:rming A number or a Pair with an A number
X)) expression operator as its first element
> (abs -3)
3
Lambda expressions evaluate to anonymous procedures. A Scheme list is written as elements in parentheses:
(lambda (<formal-parameters>) <body>)
Two equivalent expressions: A
(define (plus4 x) (+ x 4)) Each <element> can be a combination or atom (primitive).

(define plus4 (lambda (x) (+ x 4)))

+ (x 3 (+ (x24) (+35 +(-107) 6
An operator can be a combination too: (+ (+))+) 6))

The task of parsing a language involves coercing a string

((lambda (x y z) (+ x y (square z))) 1 2 3) representation of an expression to the expression itself.
Parsers must validate that expressions are well-formed.
In the late 1950s, computer scientists used confusing names. A Parser takes a sequence of lines and returns an expression.
- cons: Two-argument procedure that creates a pair
e car: Procedure that returns the first element of a pair Lexical Syntactic .
e cdr: Procedure that returns the second element of a pair analysis Tokens analysis Expression

e nil: The empty list
They also used a non-obvious notation for linked lists.

« A (linked) Scheme list is a pair in which the second element is '+, 1 Pair('+', Pair(1, ...))
nil or a Scheme list. -ty 23,)" printed as
+ Scheme lists are written as space-separated combinations. %', 4, 5.6, '), ") (+1 (- 23) (* 4 5.6))

« A dotted list has an arbitrary value for the second element of the
last pair. Dotted lists may not be well-formed lists.

)) e Iterative process e Tree-recursive process
> (define x (cons 1 nil)) e Checks for malformed tokens * Balances parentheses

X * Determines types of tokens * Returns tree structure
ilzcar) e Processes one line at a time e Processes multiple lines
1 X
> (cdr x) Syntactic analysis identifies the hierarchical structure of an
(9] expression, which may be nested.
> (cons 1 (cons 2 (cons 3 (cons 4 nil))))

(13254 Each call to scheme_read consumes the input tokens for exactly

one expression.
Symbols normally refer to values; how do we refer to symbols? P

Base case: symbols and numbers
> (define a 1) y

Recursive call: scheme_read sub-expressions and combine them

> (({elfine b 2) No sign of “a” and “b” in

> (list a b) the resulting value

(12) - The structure
Quotation is used to refer to symbols directly in Lisp. Base cases: Eval | of the Scheme

(list 'a 'b) * Primitive values (numbers) interpreter

T b)l ¢ Look up values bound to symbols L P

a

> (list 'a b) Symbols are now values Recursive calls: Creates a new

(a 2) « Eval(operator, operands) of call expressions emt/lir;gnrgez';eiich
Quotation can also be applied to combinations to form lists. * Apply(procedure, arguments) defined procedure

. e Eval(sub-expressions) of special forms ; i
> (car '(a b c)) is applied

a
> (cdr '(a b c))
(b c) Requires an

- Base cases:
environment

e Built-in primitive procedures

for name .
lookup Recursive calls:

* Eval(body) of user-defined procedures

class Pair:

"""A pair has two instance attributes:
first and rest.

,, fest must be a Pair or nil. To apply a user—-defined procedure, create a new frame in which

def _ init_ (self, first, rest): formal parameters are bound to argument values, whose parent
— T e !) is the env of the procedure, then evaluate the body of the
self.first = first . N . N
self.rest = rest procedure in the environment that starts with this new frame.
>>> s = Pair(l, Pair(2, Pair(3, nil))) (define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))
>>> s

(f (list 1 2))

Pair(1l, Pair(2, Pair(3, nil)))
>>> print(s)
(12 3)

est first
5]

niitl‘

g: Global frame
f e LambdaProcedure instance [parent=g]

Pair

R . . t= S 1 2 il
The Calculator language has primitive expressions and call expressions fparent=g] .= .= "
[parent=g] s

Calculator Expression Expression Tree
(x 3
(+ 4 5) ; ;
(x 67 8)) * 3 How to Design Functions:
1) Identify the information that must be represented and how it is
+ 4 5 %x 6 7 8 represented. Illustrate with examples.
Representation as Pairs 2) State what kind of data the desired function consumes and produces.
Formulate a concise answer to the question what the function computes.

irs rest

nil 3) Work through examples that illustrate the function’s purpose.
4) Outline the function as a template.

rest ‘H'\\
° 1
v

+‘ 8 ‘hﬂ 5) Fill in the gaps in the function template. Exploit the purpose

irst |rest first [rest
[l
statement and the examples.

‘“‘; ‘.—F“("—F“S ‘nll‘ 6) Convert examples into tests and ensure that the function passes them.

‘m»\

Test ‘ =

+

first
7

